
DNS OF PASSIVE SCALAR TRANSPORT FIELDS IN
TURBULENT FLOW AT LOW AND HIGH PRANDTL NUMBERS

B. Chaouat

ONERA, 92322 Châtillon, France

Bruno.Chaouat@onera.fr

Abstract
We perform several DNS of the turbulent channel

flow including a passive scalar with different boundary
conditions at the Reynolds number Rτ = 395 and the
Prandtl numbers Pr = 0.01, 0.1, 1 and 10. The case I
is a plane channel flow heated on both walls whereas
the case II is a plane channel heated only from one wall
but cooled from the other one at the same rate. In addi-
tion, different boundary conditions are applied for the
passive scalar at the wall. For the case I, the iso-scalar
boundary condition θw = 0 is imposed at the wall im-
plying that its fluctuation is zero whereas for the case
II, θw is not prescribed to a fixed value so that it is
fluctuating in time at the wall. For both cases, the dis-
tributions of the mean scalar field, root-mean-square
fluctuation, turbulent heat flux, turbulent Prandtl num-
ber are examined in detail. Moreover, some insights of
the flow structure of the scalar fields are provided. As
a result, the conduction region penetrates less deeply
into the core region of the channel as the Prandtl num-
ber increases from 0.01 to 10. Owing to the differ-
ent boundary conditions applied at the wall for both
cases, significant differences in the evolution of the
scalar field are observed in the channel. The impacts
of the wall scalar fluctuations on the scalar field are
appreciable within the near-wall region.

1 Introduction
Turbulent flows involving the transport of passive

scalar are encountered in many engineering appli-
cations in industrial plants but also in nature like
for instance the pollution dispersal in atmosphere.
In the case of small variation of the scalar field, the
turbulent velocity field governs the scalar field while
the influence of the scalar field on the velocity field
can be neglected in a first approximation. Direct
numerical simulation (DNS) solving all the turbulence
and thermal scales is the best tool to investigate
turbulent scalar fields and allows also to validate
closure models with heat transfer used in Reynolds
averaged Navier-Stokes (RANS) modeling (Hanjalic
and Launder, 2011; Matsubara et al., 2012), large eddy
simulation (LES) and hybrid RANS/LES modeling
(Chaouat, 2017; Kenjeres and Hanjalic, 2006).
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Figure 1: Setup of the numerical channel flow simulations
with various thermal boundary conditions. wall
heated (A=1); wall cooled (A=-1).

We consider the turbulent heat transfer in a
plane channel heated on both walls with a constant
time-averaged heat flux (case I) and a channel heated
with a constant heat flux only from one wall but
cooled from the other one at the same rate (case II)
as shown in Figure 1. The case I has been studied
by several authors such as Kawamura et al. (1999) at
Rτ = uτδ/ν = 150, 180, 395 based on the friction
velocity uτ , the channel half width δ and the molec-
ular viscosity, with the Prandtl number Pr = 0.025,
0.2, 0.71; Kozuka et al., (2009) at Rτ = 180, 395
with Pr = 0.71, 1, 2, 7, 10. Physically, these Prandtl
numbers are associated with heat transfer of a liquid
metal such as mercury (Pr ≈ 0.015), gases (Pr ≈ 1),
water (Pr ≈ 5 − 7), and seawater (Pr ≈ 13 at
0◦ C) depending on the temperature. Simulations of
the plane channel flow heated on both walls (case
I) allowed to obtain the mean field parameters as
well as the thermal turbulence statistics such as the
variance of temperature fluctuation kθ = 〈θ′θ′〉 /2,
the turbulent heat fluxes and the turbulent Prandtl
number Prt. The budgets of transport equations for
the variance of temperature kθ (Kawamura at al.,
1999), the dissipation-rate εθ and turbulent heat fluxes
(Kawamura et al., 2009) were also investigated in
detail thanks to high grid resolutions. If this case was
performed in the past by several authors, the results
are scattered across several papers so that an overview
is desirable to cover the range of the Prandtl number
varying from low to high values. On the contrary,
the case II was only treated by Lyon et al. (1991)
at the low Reynolds number Rτ = 150 and Prandtl



number Pr = 1 considering however a constant wall
temperature. The case including fluctuation in time of
the scalar θ at the wall was not previously studied so
that new results are here presented for the first time.

In this work, we perform direct numerical simula-
tions of the fully turbulent channel flow corresponding
to cases I and II with different boundary conditions
at the Reynolds number Rτ = 395 and the Prandtl
numbers Pr = 0.01, 0.1, 1, 10. The passive scalar
is here interpreted as the temperature in heat transfer
but more generally as any variable involving a passive
contaminant associated with mass transfer. The objec-
tive is to compare both the mean and rms scalar fields
associated with these two cases and to investigate the
impacts of the wall passive scalar fluctuation on the
scalar field.

2 Equations, boundary conditions and
numerical procedure

The momentum equation reads
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where in this equation, ui and p denote the veloc-
ity and pressure, respectively, the coordinate and flow
variables are normalized by the channel half width δ,
the friction velocity uτ , the kinematic viscosity ν. The
quantity Gi = δ1i denotes the source term that has the
effect to balance the friction at the upper and lower
walls to get periodic condition between the inlet and
outlet sections of the channel. The transport equation
for the passive scalar θ reads
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where in this equation, Q denotes the source term. Its
physical meaning corresponds to the mean tempera-
ture gradient necessary to balance wall heat fluxes.
The variable θ is normalized by the surface scalar flux
defined as θτ = qw/(ρcpuτ ) where ρ, cp and qw are
the fluid density, the specific heat at constant pressure
and the heat flux at the wall. The heat flux is given by
qw = −κ(∂θ/∂x3)w where κ stands for the thermal
conductivity κ = ρcpν/Pr. The thermal diffusivity is
given by σ = κ/(ρcp) = ν/Pr. Two different bound-
ary conditions are used for the scalar field according to
the parameter A (see Fig 1). In case I, A = 1, where
both walls are heated, Q = −u+1 /U

+
b to ensure zero

mean gradient of the passive scalar ∂ 〈θ〉 /∂x1 = 0,
whereas in case II, A = −1, Q = 0, i.e, an inter-
nal heat source is not required to get a fully developed
thermally flow.

Boundary conditions
For both cases, the boundary conditions at the

walls x3 = 0 and 2δ are no slip velocity u+i = 0

and constant heat flux, i.e., isoflux boundary condition
(H1). For the case I, the isoscalar boundary condition
(H2) is also imposed at the wall leading to θw = 0
whereas for the case II, θw is not prescribed to a fixed
value so that it is fluctuating in time at the wall (Lu,
D.M, Hetsroni, G., 1995). This choice is motivated
to account for the two extreme thermal conditions that
can be encountered in engineering applications or ex-
perimental facilities (Mosyak et al., 2001). Indeed, as
mentioned by Kasagi et al., (1989), it is not straight-
forward to give the thermal boundary condition on the
wall which is in contact with the turbulent flow be-
cause of the unsteady heat conduction in the solid as-
sociated with the unsteadiness of turbulence.

Numerical procedure
The dimension of the channel in the streamwise,

spanwise and normal directions along the axes x1, x2,
x3 are L1 = 6.4δ, L2 = 3.2δ and L3 = 2δ. The num-
ber of grid points is determined with the aim to solve
both the Kolmogorov scale ηκ = (ν3/ε)1/4 and the
Batchelor length-scale ηθ (Batchelor, 1959; Tennekes
and Lumley, 1972) which approaches ηκ at Pr of or-
der of unity ηθ ≈ ηκ, but ηθ = (σ3/ε)1/4 = ηκ/P

3/4
r

at small Prandtl numbers and ηθ = (νσ2/ε)1/4 =

ηκ/P
1/2
r at large Prandtl numbers. At Pr = 0.01,

ηθ ≈ 31.6 ηκ, at Pr = 0.1, ηθ ≈ 5.62 ηκ , at Pr = 1,
ηθ ≈ ηκ but at Pr = 10, ηθ ≈ 0.316 ηκ. For the
Reynolds and Prandtl number values studied here, the
grid numbers vary from the mesh M1 of resolution
256×128×256 for Pr = 0.01 and 0.1 toM2 of resolu-
tion 512× 256× 256 for Pr = 1 and M3 of resolution
1024 × 512 × 512 for Pr = 10. For all meshes, the
spacings are ∆+

1 = ∆+
2 ≈ 10 for M1, ∆+

1 = ∆+
2 ≈ 5

for M2 and ∆+
1 = ∆+

2 ≈ 2.5 for M3. The equations
are integrated in time using an explicit Runge-Kutta
scheme of fourth order accuracy in time and solved in
space by means of a centered scheme of fourth order
accuracy in space. The CFD code (Chaouat, 2011) is
based on the finite volume technique and is optimized
with message passing interface (MPI).

3 Turbulent channel flow heated on both
walls (case I)

The transformed variable Θ+ = θ+w − θ+ is con-
sidered to analyze the present results. Figs. 2 and 3
show the mean scalar variable Θ+ and its rms ver-
sus the logarithmic and linear wall distance, respec-
tively. The logarithmic region of the mean scalar is
well visible at Rτ = 395. Overall, these results com-
pare very well with previous simulations (Kawamura
et al., 1998-1999; Kozuga et al. 2009) although the
Reynolds number and Prandtl numbers may take on
different values. As a result, when the Prandtl num-
ber increases from 0.01 to 10, the thermal effect is
more pronounced. The conduction region penetrates
less deeply into the core region of the channel, the rms
scalar variance θrms is of higher order magnitude, and
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Figure 2: Mean scalar field at different Prandtl numbers in
logarithmic coordinate. Pr = 0.01, H. Pr = 0.1,
N. Pr = 1, � . Pr = 10, •. Rτ = 395.
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Figure 3: Root mean square of the scalar variance versus
the wall unit. Pr = 0.01, H. Pr = 0.1, N.
Pr = 1, � . Pr = 10, •. Rτ = 395.

the peak values location moves close to the walls. Fig.
4 shows the profile of the normal turbulent heat flux
q+3 = −

〈
u′+3 θ

′+〉 versus the wall coordinate of the
channel for all Prandtl numbers. As the Prandtl num-
ber increases, the normal turbulent heat flux becomes
larger and the peak value moves to the wall. We now
examine the validity of the gradient law hypothesis of
the turbulent heat flux modeling. The Prandtl number
is defined itself as the ratio of the turbulent eddy vis-
cosity νt to the turbulent eddy diffusivity σt

Prt =
〈u′1u′3〉 ∂〈θ〉/∂x3
〈θ′u′3〉 ∂〈u1〉/∂x3

(3)

Fig. 5 exhibits the profile of the turbulent Prandtl
number versus the wall unit. At the Prandtl numbers
Pr = 0.1, 1 and 10, one can see that the turbulent
Prandtl number reaches an asymptotic behavior inde-
pendent of the molecular Prandtl number, except how-
ever in the near wall region where a very small varia-
tion of a few percent is observed. Away from the wall,
the turbulent Prandtl number approaches unity. This
outcome confirms the hypothesis of a constant turbu-
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Figure 4: Normal turbulent heat flux q3 = −
〈
u′+
3 θ′+

〉
ver-

sus the wall coordinate. Pr = 0.01, H. Pr = 0.1,
N. Pr = 1, � . Pr = 10, •. Rτ = 395.
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Figure 5: Profiles of the turbulent Prandtl number versus
the wall unit. Pr = 0.01, H. Pr = 0.1, N.
Pr = 1, � . Pr = 10, •. Rτ = 395.

lent Prandtl number at moderate and high molecular
Prandtl numbers. But at the very low value Pr = 0.01,
the turbulent Prandtl number varies strongly with re-
spect to the wall-normal coordinate. It increases sig-
nificantly from the value 6 to 7 in the immediate vicin-
ity of the wall and then gradually decreases when ap-
proaching the center of the channel.

4 Turbulent channel flow heated on one
wall and cooled on the other one (case II)

The transformed variable Θ+ = 2θ+/(θ+w1 − θ
+
w2)

is chosen because of the thermal configuration of this
case. Figs. 6 and 7 show the mean scalar variable
Θ+ and its rms versus the wall distance, respectively.
As expected, the mean scalar profiles are antisymmet-
ric about the channel centerline with non-zero gradi-
ents at the center. The mean profiles are steeper as
the Prandtl number increases from 0.01 to 10 result-
ing from the effects of the thermal diffusivity at small
Prandtl number and by the momentum diffusivity at
large Prandtl number. As for the case I, the magnitude
of the scalar variance is higher at large Prandtl num-
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Figure 6: Mean scalar field at different Prandtl numbers in
wall coordinate. Pr = 0.01, H. Pr = 0.1, N.
Pr = 1, � . Pr = 10, •. Rτ = 395.
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Figure 7: Root mean square of the scalar variance versus
the wall unit. Pr = 0.01, H. Pr = 0.1, N.
Pr = 1, � . Pr = 10, •. Rτ = 395.

bers than at low Pr but in the contrary to the case I,
it is not reduced to zero in the near wall-region due to
the boundary condition applied at the wall. Fig. 8
shows the profile of the normal turbulent heat flux ver-
sus the wall coordinate of the channel. In comparison
with Fig. 4, the behavior of the normal heat fluxes as-
sociated with cases I and II are similar in the near wall
region but quite different when moving away from the
wall toward the center of the channel due to the dis-
tinct profiles of the mean passive scalar θ as depicted
in Figs 2 and 6. Indeed, in case I, the correlation 〈u′3θ′〉
changes of sign when moving from the lower to the up-
per walls of the channel (u′3 > 0, θ′ > 0 for x3 < δ
and (u′3 < 0, θ′ > 0 for x3 > δ) with 〈u′3θ′〉 ≈ 0 at
x3 = δ leading to an anti-symmetric profile while in
case II, this correlation 〈u′3θ′〉 remains always positive
since both u′3 and θ′ change of sign (u′3 > 0, θ′ > 0
for x3 < δ and (u′3 < 0, θ′ < 0 for x3 > δ) leading to
a symmetric profile. Fig. 9 exhibits the profile of the
turbulent Prandtl number at Pr = 0.01, 0.1, 1 and 10
versus the wall unit coordinate. As for the case I, the
turbulent Prandtl number is almost constant except at
the Prandtl number Pr = 0.01. The maximum value at
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Figure 8: Normal turbulent heat flux |q3| =
〈
u′+
3 θ′+

〉
ver-

sus the wall coordinate. Pr = 0.01, H. Pr = 0.1,
N. Pr = 1, � . Pr = 10, •. Rτ = 395.
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Figure 9: Profiles of the turbulent Prandtl number versus
the wall unit. Pr = 0.01, H. Pr = 0.1, N.
Pr = 1, � . Pr = 10, •. Rτ = 395.

Pr = 0.01 is about 4 that is lower than the one reached
in case I. But surprisingly, although the thermal con-
figuration between cases I and II is different, the pro-
file of the turbulent Prandtl number remains roughly
the same whatever the fluctuation value θ′ at the wall.
This outcome is of interest because these two cases are
generic to many industrial applications involving heat
transfer and reveals that the assumption of a constant
turbulent Prandtl number still holds at moderate and
high molecular Prandtl numbers regardless of the ther-
mal configuration considered (heated or cooled wall)
even if the instantaneous temperature is fluctuating in
time at the wall.

5 Effect of the thermal boundary condi-
tion at the wall on the rms fluctuation

Although the thermal configuration of cases I and
II is different leading to a symmetric or anti-symmetric
profiles of the mean scalar field, some elements of
comparison regarding the effect of the boundary con-
dition of the scalar fluctuation at the wall are possible
to put in light. More details are provided by plotting
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Figure 10: Root mean square of the scalar variance versus
the wall unit at Pr = 0.01. Case I •. Case II � .
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Figure 11: Root mean square of the scalar variance versus
the wall unit at Pr = 0.1. Case I •. Case II � .

the rms profile at each Prandtl number associated with
cases I and II, see Figs. 10 to 13. As the nor-
mal wall distance increases, the rms fluctuation asso-
ciated with the case I begins to increase from zero to
its maximum value in the vicinity of the wall, and then
gradually decreases when going to the central region
of the channel. By contrast, different situations oc-
cur for the case II depending on the Prandtl number
value. For the Prandtl numbers Pr = 0.01 and 0.1,
the rms fluctuation associated with case II slowly in-
creases until reaching the central region of the channel
whereas for Pr = 1 and 10, it rapidly increases and
decreases showing a peak of intensity, and then gradu-
ally increases again when approaching the centerline.
As a result, whatever the Prandtl number values, the
difference between these two rms fluctuation associ-
ated with cases I and II remains significative in the
center of the channel. One can invoke two reasons.
Firstly, the turbulence activity caused by the fluctu-
ation at the wall is sufficiently high to sustain when
going away from the wall. Secondly, the production
rate of the scalar variance Pθ ≈ −〈u′3θ′〉 ∂ 〈θ〉 /∂x3
is acting everywhere in the flow even in the center
of the channel. That being said, in the near wall re-
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Figure 12: Root mean square of the scalar variance versus
the wall unit at Pr = 1. Case I •. Case II � .
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Figure 13: Root mean square of the scalar variance versus
the wall unit at Pr = 10. Case I •. Case II � .

gion, at the lower Prandtl numbers Pr = 0.01 and 0.1,
the level of the scalar variance for the case I remains
lower than the one obtained for the case II whereas at
the Prandtl numbers Pr = 1 and 10, surprisingly, this
level is roughly the same. In particular, the profiles of
the scalar variance collapse with each other in the wall
region since the peaks of the θrms fluctuation match
with one another at Pr = 1 and 10. But these profiles
differ however from each other when going away from
the wall for the reasons given above.

6 Structure of the scalar fields
For sake of conciseness, only the flow field asso-

ciated with the case I is investigated. Fig. 14 dis-
plays the contours of the instantaneous scalar field
θ in the (x1, x3) mid-plane for the Prandtl numbers
Pr = 0.01, 0.1, 1 and 10. As expected, according
to the scale evolution of the Batchelor length-scale ηθ
with the Prandtl number, it appears that the structures
get thinner as Pr is increasing. Moreover, these struc-
tures are less and less organized as the Prandtl num-
bers increase giving rise to the detachment of vortex
substantially in the normal direction to the wall. A
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Figure 14: Contours of the instantaneous scalar field Θ
in the (x1, x3) mid-plane. (a) Pr = 0.01; (b)
Pr = 0.1; (c) Pr = 1; (d) Pr = 10; Rτ = 395.

strong activity of the passive scalar is observed in the
near wall region corresponding to the peak of θrms
fluctuation as already highlighted in Fig. 3.

7 Conclusion
The DNS of turbulent channel flow with scalar

transport has been performed at Rτ = 395 and at
the Prandtl numbers Pr = 0.01, 0.1, 1 and 10 with
different flux conditions and boundary conditions of
the passive scalar at the wall. As a result, the dis-
tributions of the mean scalar field, root mean square
fluctuation, turbulent heat flux and turbulent Prandtl
number were accurately obtained and the effect of the
Prandtl number was investigated for both cases I and
II. It has been demonstrated that the impacts of the
wall passive scalar fluctuation on the scalar field are
appreciable within the near wall region especially at
low Prandtl numbers but tend however to diminish at
moderate and high Prandtl numbers. In particular, ex-
cept in the immediate vicinity of the wall, the pro-
files of the scalar variance collapse with each other
in the wall region independently from the intensity of
the wall passive scalar fluctuation at Pr = 1 and 10.

Moreover, the structure of the scalar fields was also
examined showing that the structures get thinner as Pr
is increasing. Further work will include the validation
of hybrid RANS/LES models (Chaouat, 2017) such as
PITM (Chaouat and Schiestel, 2005) in presence of
passive scalar transport fields.
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