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Numerical Predictions of Channel Flows with Fluid
Injection Using Reynolds-Stress Model

Bruno Chaouat¤

ONERA, 92322 Châtillon, France

Numerical predictions of channel � ows with � uid injection through a porous wall are performed by solving
the time-dependent Navier–Stokes equations using a Reynolds-stress turbulent model. In� uence of the turbulence
injected � uid is investigated. Numerical results with experimental data indicate that the � ows evolve signi� cantly
vs the distance from the front wall such that different regimes of � ow development can be observed. In the � rst
regime the velocity � eld is developed in accordance with the laminar theory. The second regime is characterized
by the development of turbulence, which occurs at different locations in the channel because of the presence
of impermeable and permeable walls, and by the transition process of the mean axial velocity when a critical
turbulence threshold is attained. Computed results are compared with existing experimental data including axial
mean velocity pro� les and full turbulent stresses. As a result for the simulations, the Reynolds-stress model predicts
the mean velocity pro� les, the transition process, and the turbulent stresses, in good agreement with experimental
data.

Nomenclature
A = � atness anisotropy parameter, 1 ¡ 9

8 .A2 ¡ A3/
A2 = second invariant, ai j a ji

A3 = third invariant, ai j a jkaki

ai j = Reynolds-stress anisotropy, .¿i j ¡ 2
3
k±i j /=k

C f = friction coef� cient, 2.u¿ =um /2

cp = speci� c heat at constant pressure, J/(kg ¢ K)
E = total speci� c energy, m2/s2, J/kg
H = total speci� c enthalpy, h C u i ui =2, m2/s2

h = speci� c enthalpy, m2/s2

Ji j = tensor of diffusion for the Reynolds stress ¿i j

k = speci� c turbulent kinetic energy, ¿ii =2, m2/s2

L = channel length, m
M = Mach number
m = injection mass � ux, kg/(m2 ¢ s)
ni = normal to the wall
Pi j = production rate of ¿i j caused by mean shear
Prt = turbulent Prandtl number
p = static pressure, Pa
qi = total heat � ux vector, W/m2

Rs = injection Reynolds number, ½sus±=¹s

Rt = turbulent Reynolds number k2=º²
Ru = universal gas constant
Si j = strain-rate tensor
s = speci� c entropy, J/(kg ¢ K)
T = temperature, K
U = vector of conservativevariables N½; N½ Qu i ; N½ QE; N½ ]u 00

i u00
j ; N½²

u i = velocity vector, m/s
um = bulk velocity, m/s
us = injection velocity, m/s
u¿ = friction velocity, m/s
xi = Cartesian coordinate, m
xC

i = dimensionless distance from walls, xi u¿ =º
® = coef� cient for planar or axisymmetric geometry
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¯ = momentum � ux coef� cient,
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° = ratio of speci� c heats
± = channel height, m
±i j = Kronecker tensor
² = dissipation rate, m2/s3

²i j k = permutation tensor
· = thermal conductivity,W/(m ¢ K)
¹ = dynamic viscosity, kg/(m ¢ s)
º = kinematic viscosity, m/s2

½ = density, kg/m3

6i j = total stress tensor
¾i j = viscous stress tensor
¾s = surface-generatedpseudoturbulence,. ]u00

2u 00
2=u2

s /1=2

¿i j = turbulent stress tensor, ]u 00
i u 00

j
8i j = pressure-strain� uctuations, p0 S 00

i j
!i = vorticity tensor, ²i jk @uk=@x j , (1/s)

Subscripts

m = bulk mean quantity
s = condition at injection surface
w = wall

Superscripts

N = Reynolds averaged of variable

Q = Favre averaged of variable
0 = Reynolds turbulent � uctuating value of variable
00 = Favre turbulent � uctuating value of variable

Introduction

F LOWS through porous ducts with wall injection are en-
countered in many engineering applications such as transpi-

ration cooling, boundary-layer control, and the combustion in-
duced � ow� eld in solid-propellantrocket motors (SRM). For SRM
applications1 the � ow playsan importantrole in ballisticsprediction,
which is affected by the transitionbehaviorof the mean axial veloc-
ity and by turbulencequantities.The � ow in the chamber of a solid
rocket motor can be modeled by a duct � ow with appreciable � uid
injection through permeable walls. This type of � ow evolves sig-
ni� cantly with respect to the distance from the front wall. Different
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� ow regimes can be observed depending on the injection Reynolds
number Rs D ½sus±=¹s , de� ned with the injectiondensity½s , theve-
locity us , the dynamic viscosity ¹s at the porous surface, and with
the radius of a cylindrical duct or the half-height of a planar chan-
nel ±. In the � rst regime the velocity � eld is developedin accordance
with the laminar theory. The second � ow regime is characterizedby
the development of turbulence and by the transition process of the
mean axial velocity when a critical turbulence threshold is attained.
For the � rst regime where the � ow is mainly governed by the � uid
injection, Taylor,2 Culick,3 and Yamada et al.4 have analytically
determined the velocity pro� les
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in a frame of reference where x1 and x2 are respectively the dis-
tances along the streamwise and normal directions and ® D 0 or
1 for planar or axisymmetric � ows. Equation (1) shows that the
axial velocity increases linearly with the axial distance and satis-
� es the no-slip condition of the Navier–Stokes equations because
u1.±/ D u1.¡±/ D 0. Because of the progress in computing power,
channel � ows with � uid injection through porous walls have been
studied numerically by several authors. Varapaev and Yagodkin5

and Casalis et al.6 investigated the viscous stability of the � ow
in a channel. Relative to the stability of uninjected channel � ow,
their results showed that the neutral stability of the � ow occured
at a lower axial-� ow Reynolds number for low values of injec-
tion Reynolds number and that the axial-� ow Reynolds number at
the neutral stability increased linearly for large values of injection
Reynolds number. Sviridenkov and Yagodkin7 assumed the � ow
to be incompressible and solved the time-average Navier–Stokes
equations using k–² and k–! turbulence models. Their results pro-
vided different predictions of the transition process and overpre-
dicted turbulencelevelsby about300 and 200% in the posttransition
of the � ow. Beddini8 solved a parabolic differential equations sys-
tem using a turbulencemodel developedby Donalson.9 This model
is based on transport equations of the Reynolds stresses with an
algebraic relation for the turbulence macro-length scale. The cal-
culations overpredicted the experimental data of Yamada et al.4 by
about 200%, but a reasonable agreement with the data of Dunlap
et al.10 was obtained by generating pseudoturbulenceat the porous
surface. Sabnis et al.11 applied the k–² model for simulating the
� ow� eld measured by Dunlap et al.10 As for the previous simula-
tions, the turbulence intensity was overpredicted by about 200%.
Then, Sabnis et al.12 attempted to predict the � ow� eld in the noz-
zleless solid rocket motor investigated experimentally by Traineau
et al.13 They empirically modi� ed the damping functions of the
k–² model at low Reynolds number in order to obtain more ac-
curate results. Chaouat14 also investigated this � ow13 by means of
k–² turbulence model by setting the damping functions equal to
unity yet discrepancies remained regarding the turbulence inten-
sity. Liou and Lien15 decided to solve the two-dimensionalNavier–
Stokes equations directly without turbulence model. Although the
mesh resolution did not permit a direct numerical simulation of
the internal � ow� eld, they indicated turbulence intensity pro� les
in good agreement with experimental data.13 Recently, they have
extended their previous simulation by solving the two-dimensional
Navier–Stokes equations with a subgrid scale turbulence model.16

The results of their simulations seem to demonstrate that large
eddy structures play an important role in the � ow. More recently,
Apte and Yang17 have solved the three-dimensionalNavier–Stokes
equations using a compressible version of a dynamic Smagorin-
sky model for simulating this � ow.13 The vortex-stretching and
rolling mechanisms of the � ow were well reproduced.As expected,
these authors have mentioned that large eddy simulation must be
three-dimensional for predicting fairly well the Reynolds stress
intensity.

Fig. 1 Schematic of VECLA facility.

A recent speci� c experimentalsetuphas been realizedat ONERA
for investigating the characterictics of injection driven � ows. The
experimental setup is sketched in Fig. 1. The planar experimen-
tal facility is composed of a parallelepiped channel bounded by a
porous plate and impermeable walls. The value of the duct length
is L D 58:1 cm. The channel height is 1.03 cm, and the width is
6 cm. Cold air at 303 K is injected with a uniform mass � ow rate
m D 2:619 kg/m2s throughporousmaterialof porosities,8 or 18¹m.
The injection velocities are � xed by the local pressure in the chan-
nel. The pressure at the head end of the channel is 1.5 bar. In the
exit section the pressure is 1.374 bar in accordance with the oper-
ating of the experimental setup. From the de� nition of the injection
Reynolds number already mentioned, ± corresponds to the height
of the channel caused by the nonsymmetry of the setup. Taking into
account these parameters, the value of the injection Reynolds num-
ber is approximately 1600. Because of the mass conservation, the
� ow Reynolds number Rm D ½mum ±=¹m based on the bulk density
½m and the bulk velocity um varies linearly vs the axial distance of
the channel. It ranges from zero to approximatelythe value 9 £ 104.
Experiments in three-dimensional geometry have been carried out
at ONERA by Avalon et al.18 The mean velocity pro� les and the
Reynolds-stress turbulent intensities have been measured with a
hot-wire probe in eight sections of the channel located at x1 D 3:1,
12, 22, 35, 40, 45, 50, and 57 cm. The hot-wire probe is intro-
duced in the channel through the impermeable wall, as indicated
in Fig. 1.

The objective of the present study is to investigate the � ow in the
experimentalfacilityVECLA.18 In this aim numerical � ow� eld pre-
dictions are performed by solving the time-averagedNavier–Stokes
equations of mass, momentum, and energy using a Reynolds-stress
model (RSM). This model is basedon the transportequationsof each
individual component of the Reynolds-stress tensor and the trans-
port equation of the dissipation rate. The use of such a turbulent
model is motivated by the fact that it represents a good compromise
between large eddy simulations that require very large computing
time and � rst-order models that fail to predict complex � ows accu-
rately, as for instance, � ows with strong effects of streamline cur-
vature. Contrary to � rst-order turbulence models, second-order tur-
bulence models are based on the pressure-straincorrelation term,19

which plays a pivotal role in determining the structure of turbu-
lent � ows. This term of major importance redistributes turbulent
energy among the Reynolds-stress components. For calculations
of complex wall-bounded turbulent � ows, a wall re� ection term20

is generally incorporated in that model to account for the surface
contribution from the solution of the Poisson equation. In a more
practical approach some statistical models21¡23 (V2F type model)
have been developed recently, which are a simpli� ed version of
RSM models. These require only the transport equations of the tur-
bulent kinetic energy, the correlation of the normal � uctuating ve-
locities,and the dissipationrate. In that formulationan ellipticequa-
tion is introduced and interpreted as an approximation of the wall
effects.

The RSM model used in this application has been originally de-
velopedby Launder and Shima.24 This model is selectedbecause its
formulation is simpler and requires less empirical adjustments than
most othermodels.Therefore,it is a goodcandidateto handlea large
variety of � ows. In the present study this model has been extended
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for compressible� ows in a similar way of Huang and Coakley25 and
modi� ed for simulating injection induced � ows. It has accurately
predicted rotating channel � ows.26

Governing Equations
Turbulent � ow of a viscous � uid is considered. As in the usual

treatments of turbulence, the � ow variable » is decomposed into
ensemble Reynolds mean and � uctuating parts as follows:

» D N» C » 0 (3)

In the present case the Favre average is used27 for a compressible
� uid so that the variable » can be written as

» D Q» C » 00 (4)

with the particular properties Q» 00 D 0 and ½» 00 D 0. These relations
imply that Q» D ½»= N½ . The Reynolds average of the Navier–Stokes
equations produces in Favre variables the following forms of the
mass, momentum, and energy equations28:
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The mean stress tensor N6i j is composed by the mean pressure Np,
the mean viscous stress N¾i j , and the turbulent stress N½ ¿i j as follows:

N6i j D ¡ Np±i j C N¾i j ¡ N½¿i j (8)

In this expression the tensor N¾i j takes the usual form:

N¾i j D 2 N¹ NSi j ¡
2

3
N¹

@ Nuk

@xk
±i j (9)

where themeanstrainrate NSi j and and the Favre-averagedReynolds-
stress tensor ¿i j are de� ned respectively by
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and ¹ is the molecular viscosity.Assuming ideal-gas law, the mean
thermodynamic pressure is computed by

Np D .° ¡ 1/ N½
¡

QE ¡ 1
2

Qu i Qu i ¡ 1
2 ¿i i

¢
(12)

The presence of the turbulent contribution ¿ii in Eq. (12) shows a
coupling between the mean equations and the turbulent transport
equations. The mean heat � ux Nqi is composed by the laminar and
turbulent � ux contributions:

Nqi D ¡N·
@ NT
@xi

C N½ ]h 00u 00
i (13)

Closure of the mean � ow equations is necessary for the turbulent
stress N½ ]u 00

i u 00
j , the molecular diffusion ¾i j u 00

i , the turbulent transport
of the turbulent kinetic energy N½ ]u 00

k u 00
k u 00

j , and the turbulent heat � ux
N½ ]h 00u 00

i .

Turbulence Model
The Favre-averagedcorrelationtensor ¿i j D ]u00

i u00
j is computedby

means of a transport equation as follows:
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The terms on the right-hand side of Eq. (14) are identi� ed as pro-
ductionby the mean � ow, dissipationrate, slow redistribution,rapid
redistribution, wall re� ection and diffusion. In these expressions
k D ¿ii =2 is the turbulent kinetic energy, and ai j D .¿i j ¡ 2

3
k±i j /=k

is the anisotropic tensor. The functions c1, c2 , cw1 , cw2 depend on
the second and third invariants A2 D ai j a ji , A3 D ai j a jk aki , the � at-
ness coef� cient parameter A D 1 ¡ 9

8 .A2 ¡ A3/, and the turbulent
Reynolds number Rt D k2=º². The dissipation rate ² in expression
(14) is computed by means of the following transport equation:
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Values of the constant coef� cients are cs D 0:22, c²1 D 1:45, c²2 D
1.9, c² D 0:18. The functions suggested by Shima29 are listed in
Table 1. Relative to the original model, the function Ã1 has been
modi� ed for simulating injection induced � ows that are far from
equilibrium state because its value can be too large in compari-
son with the standard value c²1 . Therefore, Ã1 has been bounded,
jÃ1j < 0:125 c²1 . This has the effect of preventing to early laminar-
ization of the � ows. On the other hand, the functionÃ2 has been set
to zero because of its empirical foundation.

Table 1 Functions in the model of Shima

Functions Expressions

c1 1 C 2:58AA1=4
2 f1 ¡ exp[¡.0:0067Rt /

2]g
c2 0:75A1=2

cw1 ¡ 2
3 c1 C 1:67

c2w max.2
3 c2 ¡ 1

6 ; 0/=c2

fw 0:4k3=2=²x2
Ã1 1:5A.Pii =2 N½² ¡ 1/
Ã2 0:35.1 ¡ 0:3A2/ exp[¡.0:002Rt /

1=2]
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Regarding the molecular diffusion and the turbulent transport
terms, a gradient hypothesis has been proposed:
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For the heat transfer the turbulent � ux is computed by means of the
k and ² variables:
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The coef� cient c¹ takes the standard value of 0.09.

Numerical Approach
Numerical Algorithm

The computations have been performed in two-dimensional ge-
ometry. This is a good approximation because the experimental
setup is relatively wide (width of 6 cm, height of 1.03 cm) such
that the geometric shape factor is approximately six. The � nite vol-
ume technique is adopted in the present code30 to solve the full
transport equations.The vector of the unknown variables is formed
by the mass density, the momentum, the total energy, the Reynolds
stresses, and the dissipation rate as indicated by

U T D . N½; N½ Qu1; N½ Qu2; N½ QE; N½ ]u00
1u00

1 ; N½ ]u 00
1u 00

2 ; N½ ]u 00
1u 00

3;

N½ ]u00
2u 00

2; N½ ]u 00
2u 00

3 ; N½ ]u 00
3u 00

3; N½²/ (24)

For the two-dimensional computations it is assumed that the mean
velocityand the meangradientsare zero in the spanwisedirectionx3.
As expected in that condition, the RSM model produces turbulent
quantities ]u 00

1u 00
3 and ]u 00

2u 00
3 equal to zero. The correlation ]u00

3u00
3 is

computed by the slow part of the redistribution term 8.1/33 and
by the diffusive term J33 . But this component ¿33 D ]u00

3u 00
3 does not

affect the mean motion, as indicated by Eq. (6). The vector U is
calculated at the center of each cell, whereas the � uxes F at the
cell interfaces are computed by means of an approximate Riemann
solvers as follows:

F D [F.UR/ C F .UL/]=2 ¡ jBj[.UR ¡ UL /=2] (25)

where jBj is the absolute Jacobian matrix computed at the interface
by the Roe average.31 The two approximationsUR and UL for the
left and right sides are evaluatedon each interfaceof the mesh using
a MUSCL approach.32 The numericalscheme is second-orderaccu-
rate in space discretization.The governing equations are integrated
explicitely in time using a three-step Runge–Kutta method. No ar-
ti� cial dissipation is added in the numerical scheme in order to not
alter the solvingof the transportequations.The codehas beenprevi-
ously calibrated with the case of fully developed turbulent channel
� ows.30 In the present computations a local time-step technique is
used to accelerateconvergenceto the stationarystate. For each sim-
ulation convergence of the numerical results is achieved when the
average residual pro� les go to zero for each dependant variable. In
this case it is also veri� ed that the ratio of exit mass � ow to the
injected mass � ow is close to unity (within 0.1%).

Boundary and Initial Conditions

Different boundary conditions are applied in the computational
domain shown in Fig. 2. For the impermeable walls no slip on
velocity and constant temperature NTw are required. The turbulent
kinetic energy kw D 0 and the wall dissipation rate value ²w D
2º.@

p
k=@x2/

2 , are speci� ed.33 The re� ection of the pressure-strain
� uctuations from the rigid wall are taken into account through the
term 8.w/i j in the transport equation of the Reynolds-stress tensor
(14). For the permeablewall the in� ow boundaryconditionrequires
a constant mass � ow rate at the same temperature Tw . This implies
that the mean injectionvelocity us along the normal direction to the
wall is computed as

us D cp

h
¡ Np=m Ru C

q
[. Np=m Ru/]2 C 2 NTw=cp

i
(26)

Fig. 2 Schematic of channel � ow with � uid injection.

The turbulent boundary conditions applied at the porous wall
are an important issue of the present work. Experimental
investigations34¡36 of injected air from porous plates indicate that
some stationary velocity � uctuations appear in the � ow and that
disturbance amplitude increases with increasing injection velocity.
Recently, regarding the VECLA facility, Avalon et al.18 have also
shown that the pseudoturbulenceintensity close to the porous wall
depends on the porosity and the injection velocity. Consequently,
the turbulence � uctuations at the porous surface can be related to
the mean injection velocity by means of a coef� cient de� ned as
¾s D . ]u 00

2u 00
2=u2

s /
1=2 to be parametrically investigated.Other correla-

tions such as ]u00
1u00

1 or ]u00
3u 00

3 are smaller than the normal velocity
� uctuations ]u 00

2u 00
2 of the injected � ow. In this work several simu-

lations are performed for investigating the in� uence of turbulence
in injected � uid for the values ¾s D 0:1, 0:2, 0:3, 0:4, and 0:5. For
injectionof velocitiesof low intensity, the standardvalue of the wall
dissipation rate ²w is imposed at the porous surface. This assumes
that the porosity of the porous plate is � ne grained (8 ¹m). Another
point to emphazise concerns the pressure � uctuations. Considering
that the permeablewall does not re� ect the pressure� uctuations,the
term 8.w/i j of Eq. (14) is reduced to zero in the normal direction
to the permeable wall. A pressure boundary condition is applied for
the exit section of the channel.

Grid Independance

Numerical simulations are performed on re� ned meshes requir-
ing 100 £ 100, 200 £ 200, and 200 £ 300 nonuniform grids in x1

and x2 directions. For all of the meshes, the grid in the normal di-
rection x2 is distributed using two geometric progressions from the
wall to the center of the channel. For instance, the transverse reso-
lution for the mesh 100£ 100 is 1 ¹m near the walls and 200 ¹m
in the center of the channel. From zero to 0.5 mm, there are 20
points distributed with a geometric progression of 1.128. From 0.5
to 5.1 mm, 30 points are distributedwith a geometric progressionof
1.022. The dimensionless distance xC

2 D x2u¿ =º between the � rst
node and the wall is less than 0.3. In such conditions this grid
re� nement provides full resolutions for the � ow in the permeable
wall region and for the boundary layer generated by the rigid walls.
A grid-independence study was performed by checking the axial
mean velocity and the turbulence intensity. In the case where the
grid resolution along the normal direction is not re� ned, it has
been observed that the distribution of the turbulence intensity of
the channel � ow is slightly modi� ed. The turbulence is less devel-
oped in the wall region. Computations have shown in this case that
the turbulent kinetic energy and the dissipation rate levels are in� u-
enced by the boundary condition of the dissipation rate at the wall.
As known, the dissipation rate presents a very strong variation in
the wall region. It must be computed accurately. The � ow predic-
tions appear less sensitive to the mesh re� nement in the streamwise
direction x1 .

Numerical Results
Streamlines and Mean Flow Contours

The streamlines and the mean � ow contours are presented for
the simulation performed with the injection parameter ¾s D 0:2.
Figure 3 shows the streamlines and the mean velocities of the � ow-
� eld. Strong effects of the streamlines curvature are observed near
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Fig. 3 Streamlines and mean � ow velocity � eld: ¾s = 0.2.

Fig. 4 Mean dimensionless entropy contours; 11:15 < s/cv < 11:19;
D = 0.001; ¾s = 0.2.

the porous wall as a result of the � uid injection. The velocities in-
crease rapidly in the boundary layer generated by the rigid wall.
Figure 4 represents the mean dimensionless entropy contours Ns=cv

of the � ow� eld. It is shown that the trajectoriesof the entropy lines
depart from the permeable wall and move to the exit section of
the channel. Applicable to the analysis of the variation of entropy
are Crocco’s equation for steady viscous � ows and the steady-state
energy equation given respectively by

T
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D ²i jk ! j uk C
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@¾i j
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u j
@ H
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½

@

@x j
.½u j / (28)

where !i D ²i jk @uk=@ x j is the vorticity tensor. In the region of the
channel where viscous diffusion, turbulence, and compressible ef-
fects can be neglected, Eq. (28) shows that the total enthalpy is
constant along the streamlines of the � ow. Because the injection
boundary condition is applied at the permeable wall, the stagnation
enthalpyhas approximately the same constantvalue along all of the
streamlines. Therefore, the enthalpy gradient of Eq. (27) vanishes.
Considering that the temperature is almost uniform in the channel
and taking into account the vorticity term ²i jk ! j uk as well as the
velocity pro� le (1) for a planar symmetric channel, resolution of
Eq. (27) yields the expression for the entropy

s D ¼ 2u2
s x2

1

8±2T
sin2

³
¼x2

2±

´
(29)

For the VECLA con� guration the value at the permeable wall is
ss D ¼ 2u2

s x2
1 =8±2T . This relation shows that the entropy is depen-

dent of the injection velocity us at the wall. Moreover, it varies as a
quadratic function of the axial distancealong the channel, as shown
by the distributionof the entropy contours.The entropy pro� le (29)
satis� es the steady convectiveequationu j @s=@x j D 0. In the case of
a turbulent � ow regime, the entropy is also created by the turbulent
correlation !0

j u
0
k . Figure 5 shows the mean vorticity contours in

the channel. It can be seen that the magnitude of the vorticity in-
creases rapidly at two locations; one near the impermeable wall
(x1 D 0:20 m) and the other near the permeable wall (x1 D 0:48 m),
corresponding to the � ow transition.The oscillations of the curves,
which appear near the permeable wall, correspond to the physical
instabilities of the shear stress, which are produced by the � uid

Fig. 5 Mean vorticity contours; ¡¡ 5:103 < Å!3 < 105; D = 1000 (1/s);
¾s = 0.2.

Fig. 6 Mean pressure contours; 1:37 < p < 1:53; D = 0.004 bar;
¾s = 0.2.

Fig. 7 Mach-number contours; 0 < Mach < 0:35; D = 0.01; ¾s = 0.2.

injection. The evolution of the mean vorticity can be explained by
its transport equation (30) in a steady � ow regime:

Qu j
@ Q!i

@x j

D º
@2 Q!i

@x j @x j

¡ @

@x j
. !00

i u 00
j / C Q! j

QSi j C !00
j S

00
i j C O (30)

where O representsthe termof compressible� ow effects,which can
be neglected. For a two-dimensional computation the mean vortic-
ity is along the spanwise direction Q!3 D .@ Qu2=@x1 ¡ @ Qu1=@x2/. It
is created by the interaction between the � ow injected in the nor-
mal direction to the permeable wall and the � ow coming from the
head end of the channel in the streamwise direction. The vorticity
is convected by the main � ow velocity and modi� ed by the lami-
nar and turbulent diffusion processes as indicated by Eq. (30). The
gain or loss of the mean vorticity is only caused by the correla-
tion term !00

j S
00
i j composed of the � uctuating vorticity components

and by � uctuating strain rates. The laminar contribution Q! j
QSi j is

reduced to zero for two-dimensional mean � ow. Figure 6 shows
the mean pressure contours of the channel � ow and reveals that the
pressure is uniform in each cross section of the channel. Figure 7
illustrates the Mach-numbercontoursof the channel � ow. High res-
olution of the steady-statecomputational � ow� eld can be observed
throughthe regularbehaviorof the contour lines.The Mach-number
ranges from zero in the head end of the channel to approximately
0.35 in the exit section of the channel.

Effect of Turbulence in Injected Fluid

Several simulations have been performed to investigate the in� u-
ence of the turbulence injection by means of the parameter coef� -
cient¾s . As it couldbe expected,the turbulencetransitionis affected
by the pseudoturbulenceinjected through the porous wall. Figure 8
shows thecontoursof the turbulentkineticenergyfor the simulations
performed with the injection parameter ¾s D 0:1, 0.2, 0.3, 0.4, and
0.5. Because of the presence of permeable and impermeable walls,
the development of the turbulence occurs at two different locations
in the channel. In particular, it can be seen that the turbulence is
developedmore rapidly near the impermeable wall region. Relative
to the stability of channel � ow bounded by impermeable walls, this
result is in agreementwith the fact that the stability of channel � ow
with � uid injection through the walls increases with the injection
Reynolds number, as shown in Fig. 9. This is attributed to the ef-
fects of favorable pressure gradient in the permeable wall region,
as mentioned by Varapaev and Yagodkin.5 Figure 8 also indicates
that increasing the pseudoturbulenceintensity has the effect of trig-
gering early the transition process near the permeable wall. This
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¾s = 0.1

¾s = 0.2

¾s = 0.3

¾s = 0.4

¾s = 0.5

Fig. 8 Contours of turbulent kinetic energy; 0 < k < 160; D = 5 m2 /s2.

Fig. 9 Variation of axial-� ow Reynolds number Rc = ½cuc±/¹ for sta-
bility vs the injection Reynolds number Rs = ½sus±/¹: – – – , linear sta-
bility analysis5; and , present computation.

signi� es that � uid injection with high turbulence intensity destabi-
lizes the channel � ow more rapidly than a � uid injection with low
turbulence intensity. As a consequence, the transition location near
the permeable wall shifts in the upstream direction. On the other
hand, the transition of the turbulence near the impermeable wall
remains unaffected by turbulence in injected � uid. Figure 8 shows
that the contour lines of the turbulent kinetic energy have a similar
evolution at the downstream location of the mean � ow transition
for ¾s D 0:2, 0.3, 0.4, and 0.5. In the case of a low turbulence level
computed with ¾s D 0:1, a differentdistributionof the turbulence is
observed in the channel. This is also illustrated in Fig. 10, which
shows for different values of the injection parameter the evolution
of the integral momentum � ux coef� cient37 de� ned by

Fig. 10 Axial variationsof the coef� cient ¯: , experimental data; –¢ –,
¾s = 0.1;¢ ¢ ¢ ¢ ¢ , ¾s = 0.2; - - - -, ¾s = 0.3; – – –, ¾s = 0.4; and ——, ¾s = 0.5.

¯ D
N½±

R
±

0
N½ Qu2

1 d x2
¡ R ±

0
N½ Qu1 d x2

¢2
(31)

Effects of the pseudoturbulence injected at the porous wall is
well described in this � gure. The rapid drops of the coef� cient ¯
correspond to the transition locations of the mean velocity pro� les,
which occur near the impermeable wall region and afterward near
the permeable wall region. It can be noticed that the low initial
turbulenceinjectionat the permeablewall for ¾s D 0:1 is too small to
trigger the secondtransitionprocessnear the permeablewall region.
This � gure reveals a qualitative agreement with the experimental
data, but a discrepancy in the magnitude remains in the laminar
region of the � ow. It is of interest to compute the coef� cient ¯
analyticallyusing the laminar velocitypro� le. The pro� le of Eq. (1)
can be extended to the VECLA con� guration in the range domain
[0; ±] with u1.0/ D 0 although the effects of the laminar boundary
layer for x2 D ± are not taken into account in this relationship:

u1 D us
x1

±

¼

2
cos

µ
¼.± ¡ x2/

2±

¶
(32)

Computation of the coef� cient ¯ taking into account integration of
the pro� le (32) over the domain [0, ±] yields the value ¼ 2=8 ¼ 1:23,
which is quite close to the numerical value predicted by the simu-
lations. This value corresponds strickly to a symmetrical � ow with
two-wall injection with respect to the centerline. In the VECLA
setup the effect of the nonsymmetry � ow on the ¯ value becomes
more and more negligible for the laminar � ow regime as the axial
distance from the head end increases. In this case ¯ goes to 1.23.
This approximation is not valid very close the head end where the
Mach numbergoes to zero.This phenomenaexplainsthe oscillation
values of ¯ in that region. A more de� nitive way to determine the
axial location of the mean � ow transition consists in examining the
local variation of the skin-friction coef� cient C f de� ned as

C f D 2.u¿ =um/2 (33)

where the bulk velocity um is computed by integration over the
channel height:

um D 1

±

Z ±

0

Nu1 d x2 (34)

and where the friction velocity u¿ is computed on the permeable
wall u¿ s D u¿ .0/ or on the impermeablewall u¿w D u¿ .±/. Figure 11
shows the evolutionof the skin-frictioncoef� cient computed for the
impermeableand permeablewalls. As can be observed,the rapid in-
creases of this coef� cient reveal the transitionlocationsof the mean-
velocity pro� le, which occurs at different stations in the channel.
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Table 2 Mean � ow variables

x1, cm us , m/s um , m/s u¿s , m/s u¿w , m/s

3.1 1.48 4.62 0.11 0.65
12.0 1.49 17.24 0.20 1.23
22.0 1.50 32.18 0.29 2.67
35.0 1.54 52.44 0.38 4.19
40.0 1.56 60.09 0.41 4.74
45.0 1.58 68.30 0.42 5.15
50.0 1.60 77.07 1.02 5.63
57.0 1.65 89.27 1.65 6.32

a)

b)

Fig. 11 Axial variation of the skin coef� cient cf : a) permeable wall;
b) impermeable wall: –¢ – , ¾s = 0.1; ¢ ¢ ¢ ¢ ¢ , ¾s = 0.2; - - - -, ¾s = 0.3; – – –,
¾s = 0.4; and ——, ¾s = 0.5.

Mean Velocity and Turbulent Pro� les

Table 2 indicates the mean � ow variables at different stations of
the channel. Figure 12 shows the dimensionlessmean velocity pro-
� les Nu1=us in global coordinates x2=± in different cross sections of
the channel for the RSM prediction performed with ¾s D 0:2. For
the � rst sections in the channel, the laminar velocity pro� les com-
puted without turbulence modeling are also represented as dotted
lines in this � gure. Relative to the permeable wall region, it can
be noticed that the velocities in the boundary layer generated by
the impermeable wall increases rapidly. This � gure shows that the
general shapesof the RSM pro� les presentgoodagreementwith ex-
perimentaldata althougha minor differencepersists for the velocity
pro� les computed in the sections located at 40 and 45 cm. The lam-
inar velocity pro� les also follow very well the experimental data at
the stations x1 D 3:1, 12, and 22 cm, but large discrepanciescaused
by the turbulenceeffects of the � ow are shown for the laminar pro-
� le computed at the station x1 D 40 cm. As already observed in the
preceding � gures, the � rst transition of the mean velocity occurs in
the channel at the station x1 D 20 cm.

Figure 13 shows the evolutions of the streamwise, normal, and
cross turbulent velocity � uctuations normalized by the bulk veloc-
ity, . ]u00

1u 00
1/1=2=um , . ]u00

2u 00
2/1=2=um , . ]u 00

1u 00
2/=u2

m , in different sections
of the channel located at x1 D 22, 35, 45, and 57 cm. The levels of

Fig. 12 Mean dimensionless velocity pro� les in different sections:
¾s = 0.2. Symbols, experimental data; ¢ ¢ ¢ ¢ ¢ , laminar pro� les; ——,
RSM. x1 = 3.1 cm: MM; 12 cm: OO; 22 cm: CC; 35 cm: BB; 40 cm: +; 45 cm:
¤¤; 50 cm: §§; 57 cm: .

a)

b)

c)

Fig. 13 Turbulent velocity � uctuations normalized by the bulk veloc-
ity in different sections: ¾s = 0.2. a) ( ]u0 0

1 u 0 0
1

)1/2 /um; b) ( ]u0 0
2 u0 0

2
)1/2/um;

c) ( ]u 0 0
1 u0 0

2
)/u2

m . Symbols: experimental data; lines: RSM simulation.
x1 = 22 cm: CC, –¢ –; 35 cm: BB, – – –; 45 cm: ¤¤, - - - -; 57 cm: , ——.
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a) x1 = 35 cm, BB

b) 45 cm, ¤¤

c) 57 cm,

Fig. 14 Rms of streamwise velocity � uctuations in different sections
nomalized by the injection velocity, a) ( ]u 0 0

1 u0 0
1

)1/2 /us . ¾s = 0.2. Symbols:
experimental data; – – – , k–² pro� les; ——: RSM pro� les.

the turbulence are well reproduced by the Reynolds-stress model,
although some minor discrepancieswith the experimental data are
observed for the last section. However, the turbulence levels do not
agreewith the experimentaldata near the impermeableside .x2 D ±/.
This disagreement could be attributed to the measurements that are
not accurate in the vicinityof the impermeablewall because the hot-
wire probe is introduced through the wall (see Fig. 1). As expected,
the intensityof the turbulencevelocity� uctuationsin the streamwise
direction is higher than that in the direction normal to the wall. To
illustrate the capability of the Reynolds-stressmodel in the predic-
tion of the turbulent stresses, numerical simulations have also been
performed using the standard k–² model. The model considered in
this application incorporates the damping functions of Myong and
Kasagi.38 Figures 14 and 15 show the rms of the streamwise and
normal turbulent velocity � uctuations normalized by the injection
velocity . ]u 00

1u 00
1/1=2=us , . ]u 00

2u 00
2/1=2=us in different cross sections of

the channel located at x1 D 35, 45, and 57 cm. As already observed,
the RSM turbulent model is able to reproduce the evolutionsof the
Reynolds stresses with good agreement, contrary to the k–² model,
which overpredicts the turbulent stresses by about 300% in the � rst
sections.

a) x1 = 35 cm, BB

b) 45 cm, ¤¤

c) 57 cm,

Fig. 15 Rms of normal velocity � uctuations in different sections nor-
malized by the injection velocity, a) ( ]u 0 0

2 u 0 0
2

)1/2 /us . ¾s = 0.2. Symbols:
experimental data; – – –: k–² pro� les; ——: RSM pro� les.

Conclusions
Predictionsof channel� ows with � uid injection througha porous

wall have been made using an advanced Reynolds-stressmodel in-
corporatingtransportequationsof the stresscomponentsand thedis-
sipation rate. Comprehensive comparisons with experimental data
have been presented. It is found that the Reynolds-stress model is
able to reproduce the mean velocity pro� les and the transition pro-
cess. This model has also predicted the turbulent stresses in good
agreement with the experimental data, contrary to the standard k–²
model. Because of the presence of the impermeable and permeable
walls, the developmentof turbulencehas occuredat two different lo-
cations in the channel. Effects of pseudoturbulencein injected � uid
through the porous surface have also been investigated. It has been
observed that the turbulence � uctuations introduced in the injected
� ow can anticipateor delay the second � ow transition from laminar
to turbulent regime. When the injected turbulence level is greater
than a critical threshold, the turbulence intensity in the downstream
location of the mean-� ow transition is not modi� ed. The present
� ow prediction has also revealed that the turbulence is developed
more rapidly near the impermeablewall in comparisonwith the per-
meable wall, even if turbulence � uctuations are introduced in the
injected � ow.
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