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The partially integrated transport modeling (PITM) method [B. Chaouat and R.

Schiestel, “A new partially integrated transport model for subgrid-scale stresses and

dissipation rate for turbulent developing flows,” Phys. Fluids 17, 065106 (2005);

R. Schiestel and A. Dejoan, “Towards a new partially integrated transport model for

coarse grid and unsteady turbulent flow simulations,” Theor. Comput. Fluid Dyn. 18,

443 (2005); B. Chaouat and R. Schiestel, “From single-scale turbulence models to

multiple-scale and subgridscale models by Fourier transform,” Theor. Comput. Fluid

Dyn. 21, 201 (2007); B. Chaouat and R. Schiestel, “Progress in subgrid-scale trans-

port modelling for continuous hybrid non-zonal RANS/LES simulations,” Int. J. Heat

Fluid Flow 30, 602 (2009)] viewed as a continuous approach for hybrid RANS/LES

(Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with

seamless coupling between RANS and LES regions is used to derive a subfilter scale

stress model in the framework of second-moment closure applicable in a rotating

frame of reference. This present subfilter scale model is based on the transport equa-

tions for the subfilter stresses and the dissipation rate and appears well appropriate for

simulating unsteady flows on relatively coarse grids or flows with strong departure

from spectral equilibrium because the cutoff wave number can be located almost

anywhere inside the spectrum energy. According to the spectral theory developed in

the wave number space [B. Chaouat and R. Schiestel, “From single-scale turbulence

models to multiple-scale and subgrid-scale models by Fourier transform,” Theor.

Comput. Fluid Dyn. 21, 201 (2007)], the coefficients used in this model are no longer

constants but they are some analytical functions of a dimensionless parameter con-

trolling the spectral distribution of turbulence. The pressure-strain correlation term

encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale,

S. Sarkar, and T. B. Gatski, “Modelling the pressure-strain correlation of turbulence:

an invariant dynamical systems approach,” J. Fluid Mech. 227, 245 (1991)] devel-

oped initially for homogeneous rotating flows in RANS methodology. It is modeled

in system rotation using the principle of objectivity. Its modeling is especially ex-

tended in a low Reynolds number version for handling non-homogeneous wall flows.

The present subfilter scale stress model is then used for simulating large scales of

rotating turbulent flows on coarse and medium grids at moderate, medium, and high

rotation rates. It is also applied to perform a simulation on a refined grid at the highest

rotation rate. As a result, it is found that the PITM simulations reproduce fairly well

the mean features of rotating channel flows allowing a drastic reduction of the com-

putational cost in comparison with the one required for performing highly resolved

LES. Overall, the mean velocities and turbulent stresses are found to be in good

agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M.

Lesieur, “Spectral-dynamic model for large-eddy simulations of turbulent rotating

flow,” Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the

flow resulting from the rotation effects is also well reproduced in accordance with
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the reference data. Moreover, the PITM2 simulations performed on the medium grid

predict qualitatively well the three-dimensional flow structures as well as the longi-

tudinal roll cells which appear in the anticyclonic wall-region of the rotating flows.

As expected, the PITM3 simulation performed on the refined grid reverts to highly

resolved LES. The present model based on a rational formulation appears to be an

interesting candidate for tackling a large variety of engineering flows subjected to ro-

tation. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701375]

I. INTRODUCTION

Numerous applications in turbomachinery industry are concerned with flows in system rotation

and in the most majority of cases, the fluid motion is turbulent because of the high Reynolds number

values. Within the turbine blades, the typical Reynolds number value is of order 0.50 × 105 for a

coolant flow passage of about 2 mm diameter.7 The flow within a turbine blade is of very complex

physics because of the Coriolis forces that act both directly on the mean flow and on the turbulent

fluctuations. With the aim to investigate the modification of the turbulence by the Coriolis forces, it

is more convenient from a physical point of view to consider a flow in a simple geometry such as

the flow between infinite parallel plates. In such configuration of laboratory flows, fully developed

turbulent channel flows subjected to a spanwise rotation as shown by Figure 1 have been previously

studied both experimentally by Johnston et al.8 and numerically by several authors. Such rotating

channel flows have been initially computed in the past by using the RANS (Reynolds averaged

Navier-Stoke equations) methodology. In particular, Launder et al.,7 Pettersson and Andersson,9

Chaouat10 as well as Jakirlic et al.11 performed numerical simulations by using Reynolds stress

models (RSM) whereas Gatski and Speziale,12 Gatski and Wallin,13 Jongen et al.,14 and Hamba15

have applied algebraic stress models, both of these models being based on second-moment closures

(SMC).16 Thanks to the increase of computer power, Kristoffersen and Andersson,17 Lamballais

et al.,18 Wu and Kasagi,19 and more recently, Grundestam et al.,20 and Brethouwer et al.,21 then

performed direct numerical simulations (DNS) whereas Tafti and Vanka,22 Piomelli and Liu,23

and Lamballais et al.,6 performed large eddy simulations (LES) at higher Reynolds number for

investigating the mean features of these turbulent rotating flows by using different subgrid models.

Tafti and Vanka22 performed LES simulations using the Smagorinsky model (SM), Piomelli and

Liu23 applied a dynamic Smagorinsky model (DSM) whereas Lamballais et al.6 used a spectral

dynamic model based on the structure function.24 The characteristics of these previous DNS and

LES simulations are summarized in Table I for different Reynolds and rotation numbers, respectively,

defined by Rm = umδ/ν and Ro = �δ/um, based on the bulk velocity um and the channel width δ,

where � characterizes the rotation rate. These experimental and numerical studies have shown that

the Coriolis forces associated with the rotation appreciably affect the mean motion and the turbulent

fluctuations. In particular, as the rotation rate increases, the mean flow becomes more and more

asymmetric with respect to the channel center and the turbulence activity dramatically decreases
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FIG. 1. Schematic of fully-developed turbulent channel flow in a rotating frame.
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TABLE I. Characteristics of relevant direct and large-eddy simulations of rotating channel flows Rm = umδ/ν, Ro = �δ/um

where δ is the channel width and x1,x2,x3 denotes the axes in the streamwise, spanwise, and normal directions.

Author(s) Simulation Rm Ro Domain dimensions Resolution

Lamballais et al.6 DNS 5000 0.17, 0.50, 1.50 2πδ × πδ × δ 128 × 180 × 129

Kristoffersen DNS 5800 0.50 2πδ × πδ × δ 128 × 128 × 128

and Andersson17

Wu and Kasagi19 DNS 4560 0.30, 0.50, 0.70,1 5
2
πδ × πδ × δ 128 × 128 × 97

Grundestam et al.20 DNS 5000 0.98, 1.15, 1.21 2πδ × πδ × δ 192 × 160 × 129

DNS 5000 1.27, 1.50, 1.69 2πδ × πδ × δ 192 × 160 × 161

DNS 5000 2.06, 2.49, 3.0 2πδ × πδ × δ 192 × 160 × 201

Brethouwer et al.21 DNS 40 000 0.15, 0.45, 0.9, 1.2 4πδ × 3
2
πδ × δ 2048 × 1536 × 361

DNS 60 000 1.5, 2.1, 2.4 4πδ × 3
2
πδ × δ 1024 × 768 × 193

Piomelli and Liu23 DNS 5700 0.144 2πδ × 2
3
πδ × δ 96 × 128 × 97

Lamballais et al.6 LES 14 000 0.17, 0.50, 1.50 πδ × 1
2
πδ × δ 128 × 64 × 97

Tafti and Vanka22 LES 5600 0.20, 1 πδ × πδ × δ 64 × 64 × 64

Piomelli and Liu23 LES 11 500 0.21 2πδ × 2
3
πδ × δ 48 × 64 × 64

LES 23 500 0.21 2πδ × 2
3
πδ × δ 48 × 64 × 64

Chaouat (present work) PITM 14 000 0.17, 0.50, 1.50 3δ × 2δ × δ 24 × 48 × 64

PITM 14 000 0.17, 0.50, 1.50 3δ × 2δ × δ 84 × 64 × 64

PITM 14 000 1.50 3δ × 2δ × δ 124 × 84 × 84

with respect to the non-rotating case, the decrease being more pronounced in the cyclonic region

than in the anticyclonic wall region. As a result of interest, these studies have indicated that the

rotation stabilizes the cyclonic region of the channel flow whereas it destabilizes the anticyclonic

region.6, 8, 18 Moreover, at very high rotation regime, the turbulent flows may relaminarize because

of the rotating effects. From a quantitative point of view, experimental flow visualizations8 as well

as recent direct numerical simulations6, 17 have provided the structural information on the flow.

Direct numerical simulations constitute the best numerical tool for investigating turbulent rotat-

ing flows but they are only affordable at very low Reynolds number because of the high CPU time

consuming. Large eddy simulations which consist of modeling the more universal small scales cor-

responding to the region of the spectrum located after the cutoff wave number κc while the resolved

scales are explicitly computed by the numerical scheme are a promising method. These simulations

allow to mimic the acting mechanisms of turbulent interactions. However, most of LES simulations

are performed by using subgrid eddy viscosity models24–27 that assume a direct constitution relation

between the turbulent stress and strain components, only valid for fine grained turbulence. As a

consequence, these simulations are accurate only if they are performed on refined grids imposing

that the cutoff wave number is placed in the inertial zone of the spectrum. But this stringent criterion

cannot be satisfied for industrial applications requiring large computational domain like, for instance,

the entire aircraft which remains out of scope of LES.28 This problem is particularly acute at high

turbulent Reynolds number since the Kolmogorov scale decreases according to the R
−9/4
t law. As

for direct numerical simulations, even with the rapid increase in computer speed and the use of par-

allelization techniques in computational fluid dynamics (CFD) codes,28, 29 LES simulations remain

not affordable in practice. On the other hand, the RANS approach including second-moment closure

models as, for instance, those described in Refs. 5 and 30–33 appears well suited for predicting

engineering flows without requiring prohibitive computation times. Second-moment closure models

are able to simulate turbulent flows in system rotation because the Coriolis forces are naturally

embodied in the transport equations for the individual Reynolds stress components,10, 34 contrary

to standard first-order closure models (including in their formulations constant coefficients and as-

suming the Boussinesq hypothesis) which are unable to “see” the rotation. Viscosity models require

explicit corrections to account for the rotation.35–37 However, the RANS method based on a statistical

averaging or in practice, as recalled by Gatski et al.,38 a long-time averaging which is sufficiently
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large in comparison with the turbulence time scale, is not well suited for simulating unsteady flows

subjected to a large range of frequencies that can interact with the turbulence time scale.

As mentioned by Germano,39 the new trend in turbulence modeling is to bridge the gap between

the RANS and LES approaches that have been developed independently from each other, referring

to their basic physical foundations. Hybrid RANS/LES methods capable of reproducing a RANS-

type behavior in the vicinity of a solid boundary and a LES-type behavior far away from the wall

boundary have been proposed in the last decade.40–42 According to the literature,38 hybrid methods

can be classified into two categories, zonal and non-zonal methods. RANS/LES zonal methods rely

on two different models, a RANS model and a subgrid-scale model, which are applied in different

domains separated by an interface whereas non-zonal methods assume that the governing set of

equations is smoothly transitioning from a RANS behavior to a LES behavior, based on criteria

updated during the computation. An updated review can be found in Ref. 41, the noncommutativity

between the hybrid filter and the spatial derivative of the hybrid-filtered equations being studied

in Ref. 43. Among these hybrid RANS/LES methods, the detached eddy simulation developed by

Spalart and co-authors28, 44 is one of the most popular models. In this line of thought, Chaouat

and Schiestel,1, 3, 4 Schiestel and Dejoan2 have recently developed the partially integrated transport

modeling (PITM) method viewed as a continuous approach for hybrid RANS/LES simulations

with seamless coupling between the RANS and LES regions. This method is particularly relevant

for studying turbulent flows with non-standard spectral distributions with some departure from

the Kolmogorov spectrum.1–4, 45 From a theoretical point of view, the PITM method gains major

interest because it bridges these two different levels of description in a consistent way by a unifying

formalism developed in the spectral space.3 As the transport equations for the subfilter stress in

terms of central moment46 are formally similar to the statistical equations, the PITM method can

be applied to almost all statistical models to derive their hybrid LES counterparts corresponding to

subfilter models, provided an adequate dissipation equation is coupled to the turbulent energy or

stress transport equations. These derived subfilter models include both eddy viscosity models2, 47 and

stress models,1, 4, 45, 48, 49 depending on the level of closure. These models have been previously used

for successfully simulating engineering flows performed on coarse grids providing the instantaneous

flow structures with qualitative agreement with DNS.1, 2, 4, 45, 48–50 In the last several years, the PITM

method has become more and more widespread in turbulence modeling1, 49–52 because of its practical

interest in the field of engineering applications. But these derived stress transport models require a

specific modeling to tackle engineering flows encountered in turbomachinery industry because of

the rotation effects.

In this work, considering that second-moment closures (SMC) constitute a convenient frame-

work for system rotation, we propose to derive a specific subfilter scale stress model taking into

account the advanced modeled redistribution term developed in RANS methodology by Speziale

et al.5 denoted SSG. This modeling strategy is motivated by the idea that the recognized advantages

of second-moment closures are worth to be transposed to subfilter-scale modeling when the subfilter

scale (SFS) part is not small compared to the resolved part. To this aim, we will show that the Coriolis

term must be embedded in the subfilter stress model as a source term and that the pressure-strain-

correlation term which plays a pivotal role by redistributing the turbulent energy among the different

stress components can be developed in an invariant form under arbitrary time-dependent rotations

of the spatial frame of reference satisfying the concept of objectivity,16 if some approximations are,

however, conceded. As a result of the modeling, we will derive a specific subfilter scale stress model

accounting for the rotation and complemented with low Reynolds number extensions that embodies

interesting features allowing a more realistic description of the flow anisotropy than eddy viscosity

models, and also a better account of history and nonlocal effects. Numerical PITM simulations of

channel flows subject to a spanwise rotation will be then performed for illustrating the potentials of

the present model, the objective being to show that the model is able to accurately simulate rotating

flows on very coarse grids with quasi-similar results for the mean velocity and turbulent stresses as

those obtained by highly resolved LES (Refs. 6 and 18) performed on refined grids. In this study, the

coarse grids are deliberately chosen to highlight the ability of the PITM method to simulate large

scales of the flow with a sufficient fidelity for engineering computations. Hence, the focus of this

article will not be mainly the description of the flow physics, which have been studied in the cited
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references, but also the response of the subfilter scale stress scale model to the physical phenomena

involving in rotating flows at moderate, medium, and high rotation rates.

II. THE FILTERING PROCESS AND GOVERNING EQUATIONS

We consider the turbulent flow of a viscous incompressible fluid. In a frame rotating at angular

velocity �(t), the instantaneous Navier-Stokes equations read53

∂u j

∂x j

= 0, (1)

∂ui

∂t
+

∂

∂x j

(

ui u j

)

= −
1

ρ

∂p

∂xi

+ ν
∂2ui

∂x j∂x j

− 2ǫi jk� j uk − ǫi jkǫkpq� j�pxq − ǫi jk�̇ j xk − U̇0, (2)

where ui, U̇0, p, ǫijk, ν are the velocity vector, translational acceleration of the non-inertial framing,

the pressure, the Levi-Civita’s permutation tensor, the kinematic viscosity of the fluid, respectively.

The terms appearing in the right-hand side of this equation are referred to as the Coriolis acceleration

−2� × u, centrifugal acceleration −� × (� × x), Eulerian acceleration −�̇ × x, and transla-

tional acceleration −U̇0. In large eddy simulations, the flow variable φ is decomposed into a resolved

scale part φ̄ (filtered part) including the statistical mean 〈φ〉 and the large scale φ< = φ̄ − 〈φ〉 and a

subfilter-scale (or modeled) fluctuating part φ′. The filtered variable φ̄ is defined by the filter function

G� as

φ̄(x) =
∫ ∫ ∫

D

G�(x − x′) φ(x′) d3x ′, (3)

where � is the filter width. Assuming that the filter commutes with the differential operators, the

filtering operation is applied to the instantaneous Navier-Stokes equations and yields the filtered

equations of motion in a frame rotating at angular velocity �(t):54

∂ ū j

∂x j

= 0, (4)

∂ ūi

∂t
+

∂

∂x j

(

ūi ū j

)

= −
1

ρ

∂ p̄

∂xi

+ ν
∂2ūi

∂x j∂x j

−
∂(τi j )SF S

∂x j

− 2ǫi jk� j ūk − ǫi jkǫkpq� j�pxq

−ǫi jk�̇ j xk − U̇0, (5)

where (τ ij)SFS denotes the subfilter-scale stress tensor defined by the mathematical relation

(τi j )SF S = ui u j − ūi ū j . (6)

The presence of the turbulent contribution (τ ij)SFS in Eq. (5) indicates the effect of the subfilter scales

to the resolved field. The resolved scale tensor is computed by the relation

(τi j )L E S = ūi ū j − 〈ui 〉〈u j 〉. (7)

Assuming that the large and small scale fluctuations are uncorrelated as for spectral cutoff filter

defined by the Fourier transform,55, 56 the total stress τ ij then reads3

τi j = 〈(τi j )SF S〉 + 〈(τi j )L E S〉, (8)

whereas the statistical turbulent energy is obtained as half the trace of Eq. (8)

k = 〈kSF S〉 + 〈kL E S〉 . (9)

As usually made in LES simulations, the statistical average of the resolved stress 〈(τ ij)LES〉 which

corresponds to the correlation of the large scale fluctuating velocities appearing in Eq. (7) is computed

by a numerical procedure using the relation

〈(τi j )L E S〉 = 〈u<
i u<

j 〉 = 〈ūi ū j 〉 − 〈ūi 〉〈ū j 〉, (10)
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where u<
i = ūi − 〈ui 〉 denotes the large scale fluctuating velocity. Its transport equation is given by

∂u<
i

∂t
+

∂

∂x j

(

ūi ū j − 〈ui 〉〈u j 〉
)

= −
1

ρ

∂p<

∂xi

+ ν
∂2u<

i

∂x j∂x j

−
∂

∂x j

(

(τi j )SF S − τi j

)

− 2ǫi jk� j u
<
k ,

(11)

whereas the transport equation for the subfilter-scale fluctuation u′
i reads

∂u′
i

∂t
+

∂

∂x j

(

ui u j − ūi ū j

)

= −
1

ρ

∂p′

∂xi

+ ν
∂2u′

i

∂x j∂x j

+
∂(τi j )SF S

∂x j

− 2ǫi jk� j u
′
k (12)

or equivalently,

∂u′
i

∂t
+ ū j

∂u′
i

∂x j

= −u′
j

∂ ūi

∂x j

− u′
j

∂u′
i

∂x j

−
1

ρ

∂p′

∂xi

+ ν
∂2u′

i

∂x j∂x j

+
∂(τi j )SF S

∂x j

− 2ǫi jk� j u
′
k . (13)

Equations (11) and (12) show that the large and subfilter scale fluctuating velocities are only affected

by the frame of reference through the Coriolis acceleration. The closure of the filtered momentum

Eq. (5) requires to model the subfilter-scale turbulent stress (τ ij)SFS. In the framework of second-

moment turbulence closures, this is made by means of its transport equation which is the required

level for accurately reproducing the physical processes of turbulent flows. Like in the statistical

modeling, the closure of the filtered momentum equation requires also to model the tensorial

subfilter dissipation rate (ǫij)SFS that appears in the right-hand side of this equation or in a simple

approach, the scalar dissipation rate ǫSFS. In the present case, ǫSFS is modeled by means of its

transport equation which is derived itself from the PITM method. The modeling of the transport

equation for ǫSFS constitutes the main ingredient of the PITM approach and allows to obtain an

accurate value of the energy dissipation-rate even in situation of non-equilibrium flows when the

grid size is no longer a good estimate of the characteristic turbulence length-scale.

III. PARTIALLY INTEGRATED TRANSPORT MODELING METHOD

A. Principle of the method

From a physical standpoint, the PITM method finds its basic foundation in the spectral space

by considering the Fourier transform of the two-point fluctuating velocity correlation equations in

homogeneous turbulence. The extension to non-homogeneous turbulence is developed easily within

the approximate framework of the tangent homogeneous space at a point of a non-homogeneous

flow field assuming Taylor series expansion in space for the mean velocity field.3, 57 Indeed, this

concept ensures that the filtered field goes to the statistical mean field when the filter width goes

to infinity. In particular, when the cutoff wave number vanishes, the full integration in the tangent

homogeneous space exactly corresponds to the statistical mean, that guarantees exact compatibility

with RANS equations.3 When transposing the spectral equation in the physical space by inverse

Fourier transform involving partial integration of the turbulence field in the range [κc, κd] where

κc = π/� is the cutoff wave number computed by the grid size width �, and κd is the dissipative

wave number placed at the end of the inertial range of the spectrum completely after the transfer

zone assuming that the energy pertaining to higher wave numbers is entirely negligible, one can

derive a subfilter-scale model based on the transport equations for the subfilter scale stresses (τ ij)SFS

and the dissipation rate ǫSFS that look formally like the corresponding RANS/RSM model but

the coefficients used in the model are no longer constants.3 They are now some functions of the

dimensionless parameter ηc

ηc = κc Le =
π Le

�
, (14)

involving the cutoff wave number κc and the turbulent length scale Le

Le =
k3/2

(〈ǫSF S〉 + 〈ǫ<〉)
(15)
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built using the total turbulent kinetic energy k, the subfilter dissipation rate ǫSFS, and the large scale

dissipation rate denoted ǫ<

ǫ< = ν
∂u<

i

∂x j

∂u<
i

∂x j

. (16)

In Eq. (14), the quantity � is the effective filter accounting for the anisotropy of the grid near the

walls like the proposal of Scotti58

� = �a

(

ζ + (1 − ζ )
�b

�a

)

, (17)

where the filters �a and �b are defined by �a = (�1�2�3)1/3 and �b = (�2
1 + �2

2 + �2
3)/3)1/2

and where ζ is a constant parameter. In PITM methodology, the subfilter-scale stress model varies

continuously with respect to the ratio of the turbulent length-scale to the grid-size Le/�. For the

limiting condition when the parameter ηc goes to zero, the subfilter-scale model behaves like a

RANS/RSM model whereas when ηc goes to infinity, the computation switches to DNS if the

grid-size is enough refined. This model property can be proved easily. The PITM method has been

developed in a such way that the functional coefficients used in the subfilter models take on the

RANS values cSF Sǫ2
= cǫ2

when ηc reduces to zero implying that the RANS model is formally

recovered in a such limit. In practice, when performing PITM simulations, the parameter ηc evolves

in time and space and goes to zero only in certain flow regions like in the near wall region, for

instance. In the core flow far away the wall regions, the grid-size is often of coarse resolution but

ηc usually still reaches large values because of the turbulence length-scale Le which appreciably

increases allowing the PITM method to simulate a certain degree of unsteadiness for large scales.

As a result, previous PITM simulations performed on very coarse meshes have revealed that the

PITM simulations still provide better predictions than pure RANS models.1, 45 This success seems

to be attributed to the ability of the hybrid model to capture the large-scales dynamics of the flow,

particularly in the shear layer regions, that play a pivotal role in the turbulent mechanisms.2, 45, 47

On the other hand, when ηc is very large, the subfilter model goes to the Smagorinsky model as

demonstrated in Refs. 4 and 49 using spectral equilibrium equations. When the parameter ηc goes to

infinity, the coefficient cSF Sǫ2
reaches the value cǫ1

. In this case, previous computations1 have shown

in practice that the subgrid energy cannot be maintained implying that the model becomes useless.

These results are consistent with previous numerical simulations showing the behavior of the PITM

method in the case of decay of isotropic turbulence using a subfilter viscosity model2 or a subfilter

scale stress model.4 In particular, it has been demonstrated in Ref. 2 that the PITM method preserves

the concept of the energy cascading process as free of any spectral cutoff location. The PITM

method has been initially developed in aiming to perform continuous hybrid non-zonal RANS/LES

simulations on relatively coarse grids since the cutoff wave number can be located almost anywhere

within the energy spectrum, contrary to highly resolved LES that requires a location in the inertial

range of the spectrum. In PITM simulations, the contribution of the subfilter scales can be dominant

and even represents the main energy in particular flow region. The ratio of the subfilter energy

to the resolved energy can be moreover increased by applying a filter width equals, for instance,

twice the grid spacing, taking into account that the derived PITM models are subfilter models and

not only subgrid models. Whatever the subfilter scale energy compared to the resolved energy, the

subfilter scale stresses and the dissipation-rate are computed by transport equations while the large

scales are explicitly resolved by the numerical scheme, so that the usual hypothesis of local isotropy

prevailing for fine grained turbulence is not anymore necessary. This is the main argument that

differentiates conventional LES simulations to PITM simulations. Note that a formalism based on

temporal filtering has been proposed recently to handle non-homogeneous stationary flows leading to

a variant of the PITM method using temporal filters and called TPITM (temporal partially integrated

transport modeling) method.48 As a result of the modeling developed in the frequency space, the

dissipation rate equation finally takes the same formulation as the one found in the spectral space

by the PITM method. The PANS (partially averaged Navier-Stokes) method59 recently emerged for

performing unsteady computations also appears in the line of thought of the PITM method. The

final PANS equations have great similarities with the PITM equations, despite a completely different
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argumentation and significant differences in the practical details. With regard to the PITM method,

the PANS method, however, imposes an arbitrary fixed ratio 〈kSFS〉/k of the modeled energy to the

total energy whereas in the PITM method, it is dynamically computed according to the physics of

turbulence.

B. Exact transport equations in the presence of rotation

The first step of the present approach consists of writing the exact transport equation of the

subfilter-scale stress (τ ij)SFS in presence of the rotation. Following the work of Germano,46 it appears

that the transport equation for the subfilter-scale stress takes a generic form if written in terms of

central moments. By using the material derivative operator D/Dt = ∂/∂t + ūk∂/∂xk , the transport

equation of the subfilter stress tensor can be therefore written in the simple compact form as

D(τi j )SF S

Dt
= Pi j + �i j + Ji j − (ǫi j )SF S, (18)

where the terms appearing in the right-hand side of this equation are identified as production,

redistribution, diffusion, and dissipation. The transport equation for the subfilter energy is obtained

as the half trace of Eq. (18)

DkSF S

Dt
= P + J − ǫSF S, (19)

where P = Pmm/2, J = Jmm/2, and ǫSFS = (ǫmm)SFS/2. The production term Pij is composed by the

term P1
i j produced by the interaction between the subfilter stress and the filtered gradient velocity

P1
i j = −(τik)SF S

∂ ū j

∂xk

− (τ jk)SF S

∂ ūi

∂xk

, (20)

and by the term P2
i j generated by the rotation involving the Coriolis forces

P2
i j = −2�p

(

ǫ j pk(τki )SF S + ǫi pk(τk j )SF S

)

. (21)

The exact expressions of the redistribution �ij, diffusion Jij, and dissipation rate ǫij appearing on the

right-hand side of Eq. (18) are the following:

�i j =
2

ρ
�

(

p, Si j

)

, (22)

Ji j = −
∂�(ui , u j , uk)

∂xk

−
1

ρ

∂�(p, ui )

∂x j

−
1

ρ

∂�(p, u j )

∂xi

+ ν
∂2�(ui , u j )

∂xk∂xk

, (23)

(ǫi j )SF S = 2ν �

(

∂ui

∂xk

,
∂u j

∂xk

)

, (24)

where in Eqs. (22)–(24), the functions � of two or three variables are defined by

�( f, g) = f g − f̄ ḡ, (25)

and

�( f, g, h) = f gh − f̄ �(g, h) − ḡ�(h, f ) − h̄�( f, g) − f̄ ḡh̄ (26)

applicable for any turbulent quantities f, g, h. The quantity Sij appearing in Eq. (22) denotes the

strain deformation

Si j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

. (27)

Contrary to the production term Pij which is exact, the redistribution, diffusion, and dissipation

terms need to be modeled in the range wave number [κc, κd]. The present formalism shows clearly
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the formal analogy between the statistical and filtered approaches and their compatibility. As a

consequence, the closure approximations used for the statistical partially averaged equations are

assumed to prevail also in the case of large eddy numerical simulations.

C. Modeling of the subfilter-scale stress transport equation in the presence of rotation

As usually made in RANS methodology, the next step is to model the unknown terms appearing

in the exact Eq. (18) by means of physical considerations. Beyond the formal analogy existing

between the RANS and LES equations, the main hypothesis underlying the development of the

PITM method is to assume that the interaction mechanisms of the subfilter-scales with the resolved

scales of the turbulence are of the same nature than the interaction mechanisms involving all the

fluctuating scales with the mean flow.4 This hypothesis is so natural that it was already used in the

pioneering work of Deardorff60 allowing transposition of closure hypotheses from RANS to LES.

In a practical point of view, this means that the subfilter model as a function of the parameter ηc

can be inspired from the RANS model provided it goes to the RANS limit when ηc goes to zero.

For ηc different from zero, a modification of the length/time scales must be applied to account for

LES. This strategy is adopted to model the pressure-strain correlation term �ij which redistributes

the turbulent energy among the stress components. In the case of PITM simulations performed on

coarse grids, �ij reduces to the pressure-strain subfilter fluctuating correlations

�i j = 2�(p, Si j )/ρ = 2(pSi j − p̄Si j )/ρ =
2

ρ

(

p̄ S̄i j − p̄ S̄i j + p̄S′
i j + p′ S̄i j + p′S′

i j

)

≈ 2p′S′
i j/ρ.

(28)

From Eq. (12) written in system rotation, on can see that the subfilter-scale fluctuating pressure p′ is

solution of the Poisson equation that reads

1

ρ

∂2 p′

∂xi∂xi

= −
∂2

∂x j∂xi

[

u′
i u

′
j − (τi j )SF S

]

− 2

(

∂ ūi

∂x j

+ ǫik j�k

)

∂u′
j

∂xi

. (29)

Like in RANS statistical modeling,10 when integrating this equation in space in absence of bound-

aries, using the Green’s function solution and then multiplying by the fluctuating strain S′
i j , it is

found that �ij can be decomposed into a slow part �1
i j and a rapid part �2

i j as follows:

�1
i j (x) =

1

2π

∫ ∫ ∫

D

∂2

∂xm∂xk

[

u′
ku′

m − (τkm)SF S

]

(x′)S′
i j (x)

d3x ′

|x − x′|
, (30)

and

�2
i j (x) =

1

π

∫ ∫ ∫

D

[

(

∂ ūk

∂xm

+ ǫkpm�p

)

∂u′
m

∂xk

]

(x′)S′
i j (x)

d3x ′

|x − x′|
. (31)

These equations clearly show that the slow term �1
i j characterizes the return to isotropy due to the

action of turbulence on itself whereas the rapid term �2
i j describes the return to isotropy by action

of the absolute filtered velocity gradient involving the rotation defined by

∂a ūk

∂xl

=
∂ ūk

∂xl

+ ǫkpl�p. (32)

In the present case, these terms �1
i j and �2

i j are modeled assuming that the usual nonlinear statistical

SSG Reynolds stress models of Speziale et al.5 must be recovered in the limit of vanishing cutoff

wave number κc (κc → 0). The SSG model has been selected because it is well suited for rotating

shear flows to which it has been calibrated. The term �1
i j is modeled as

�1
i j = −cSF S1

ǫSF Sai j + cSF S2
ǫSF S(aikak j − 2

3
amnamn), (33)

where aij denotes the anisotropy tensor

ai j =
(τi j )SF S − 2/3kSF Sδi j

2kSF S

, (34)
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and where the coefficients cSF S1
and cSF S2

are now some increasing functions of the dimensionless

parameter ηc in LES methodology. The use of these functions has the effect to strengthen the return to

isotropy in the range of larger wave numbers.61, 62 The second term �2
i j is modeled by extending the

mathematical approach of Speziale et al.5 developed in homogeneous flows in RANS methodology

to the LES methodology for rotational frame of reference by taking into account the absolute filtered

velocity gradients appearing in Eq. (31) instead of the mean statistical velocity gradient. As a result,

the modeled expression �2
i j takes the form as

�2
i j = c3kSF S Si j + c4kSF S

(

aik S jk + a jk Sik − 2
3
amn Smnδi j

)

+ c5kSF S

(

aik W jk + a jk W ik

)

, (35)

where the absolute mean strain deformation Sij and the absolute mean vorticity tensor Wij are defined

by

Si j =
1

2

(

∂a ūi

∂x j

+
∂a ū j

∂xi

)

=
1

2

(

∂ ūi

∂x j

+
∂ ū j

∂xi

)

, (36)

and

W i j =
1

2

(

∂a ūi

∂x j

−
∂a ū j

∂xi

)

=
1

2

(

∂ ūi

∂x j

−
∂ ū j

∂xi

)

+ ǫmji�m = ωi j + ǫmji�m, (37)

where ωij denotes the relative vorticity. The rotational effects are taken into account in the redis-

tribution term �ij through the third term appearing in the right-hand side of Eq. (35) involving

the c5 coefficient due to the presence of the extra term ǫmji�m. So that, only the rapid term �2
i j is

modified to account for the rotation. We demonstrate in the Appendix that the exact redistribution

term �ij is an objective tensor whereas its modeling is only an approximation. In Eq. (35), the

coefficient c3, c4, and c5 remain as the same coefficients as those used in statistical modeling.3, 63

Physically, this assumption means that the rapid modeled redistribution term in the wave number

range [κc, ∞[ remains unaffected by the cutoff wave number κc. The diffusion term Jij defined in

Eq. (23) accounting to the fluctuating velocities and pressure together with the molecular diffusion

is conventionally approximated by the generalized gradient-diffusion hypothesis64

Ji j =
∂

∂xk

(

ν
∂(τi j )SF S

∂xk

+ cs

kSF S

ǫSF S

(τkl)SF S

∂(τi j )SF S

∂xl

)

, (38)

where cs is a constant numerical coefficient.

D. Modeling of the subfilter-scale dissipation rate transport equation

Closure of Eq. (18) requires to model the subfilter tensorial dissipation rate (ǫij)SFS defined in

Eq. (24) that can be decomposed into an isotropic part 2/3ǫSFSδij and an anisotropic part (ǫij)SFS

− 2/3 ǫSFSδij assumed already modeled in the redistribution term �ij. The modeling of dissipation-

rate ǫSFS is made in the present case by means of its transport equation without referring to the grid

information in the aim to obtain an accurate result in particular situations of non-equilibrium flows

when the grid-size is no longer a good estimate of the characteristic turbulence length-scale. As a

result of the theory developed in the spectral space,3 the instantaneous modeled transport equation

for the subfilter-scale dissipation-rate ǫSFS reads

DǫSF S

Dt
= cSF Sǫ1

ǫSF S

kSF S

P − cSF Sǫ2

ǫ2
SF S

kSF S

+ Jǫ − 4νǫi jk� j (ǫik)SF S, (39)

where cSF Sǫ1
is a constant coefficient whereas the coefficient cSF Sǫ2

appearing in Eq. (39) is now a

function of the ratio to the subfilter energy to the total energy 〈kSFS〉/k as follows:3

cSF Sǫ2
= cǫ1

+
〈kSF S〉

k

(

cǫ2
− cǫ1

)

, (40)

and where the coefficients cǫ1
and cǫ2

appearing in this equation denote the usual constants used

in the RANS modeling. The theory3 shows that the coefficients cǫ1
and cSF Sǫ1

must take the same

identical value cSF Sǫ1
= cǫ1

in the RANS limit. Equation (39) using the relation (40) constitutes
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the main feature of the PITM approach where only the part of the energy spectrum for κ > κc

is modeled. The ratio 〈kSFS〉/k appearing in Eq. (40) is evaluated by means of an accurate energy

spectrum E(κ) inspired from a Von Kármán like spectrum valid on the entire range of wave numbers

E(κ) =
2
3
βηL3

e k κ2

[

1 + βη(κ Le)3
]11/9

, (41)

where βη is a constant coefficient, leading to the result4

〈kSF S〉
k

= [1 + βη(κc Le)3]−2/9. (42)

So that cSF Sǫ2
takes the analytical expression4

cSF Sǫ2
(ηc) = cǫ1

+
cǫ2

− cǫ1

[

1 + βη η3
c

]2/9
. (43)

Equation (43) indicates that the function cSF Sǫ2
acts like a dynamic parameter which controls the

spectral distribution of turbulence. Note that this model is basically different from an URANS

(unsteady Reynolds averaged Navier-Stokes) approach, although it is fully compatible with it at the

limit of vanishing cutoff wave number. In contrast to the RANS modeling where the whole spectrum

is modeled, it is of importance to note that Eq. (39) is modeled only in the subfilter spectral interval

[κc, ∞[. As it can be seen, the production term appearing in Eq. (39) therefore depends on the cutoff

wave number. But the subfilter dissipation rate ǫSFS physically must remain unaffected by κc, at least

for high Reynolds numbers. Indeed, one has to keep in mind that the subfilter dissipation rate can

be interpreted as a spectral flux passing through the spectrum at the dissipative wave number κd of

energy which is transferred from the large scales to the small scales.1 The theoretical value of the

coefficient βη appearing in Eq. (43) is obtained by the limiting condition of the Kolmogorov law at

high wave numbers limκ → ∞E(κ) = CKǫ2/3κ−5/3 where CK is the Kolmogorov constant leading to

the theoretical value βηth
= [2/(3CK )]9/2. The diffusion term Jǫ appearing on the left-hand side of

Eq. (39) is modeled assuming a well-known gradient law hypothesis

Jǫ =
∂

∂x j

(

ν
∂ǫSF S

∂x j

+ cǫ

kSF S

ǫSF S

(τ jm)SF S

∂ǫSF S

∂xm

)

, (44)

where the coefficient cǫ is a constant coefficient. Note that the last term involving the rotation

appearing in the right-hand side of Eq. (39) reduces to zero if assuming local isotropy state of the

tensorial dissipation-rate (ǫij)SFS = 2/3 ǫSFSδij.

E. Low Reynolds number formulation

The final subfilter stress model is integrated to the wall and is then complemented by low

Reynolds number extensions that enable to reproduce properly the mean velocity and turbulent

stresses in the wall boundary layer. To do that, a damping function fw of the Reynolds number

Rt = k2
SF S/(νǫSF S) is introduced in the model for the near-wall correction. A new term �w

i j is

also added in the original redistributive term �ij in order to account for the wall effects caused

by the reflexion of the pressure fluctuations from rigid walls. This term has been found beneficial

for accurately reproducing the logarithmic law of the mean velocity profile in the boundary layer.

Taking into account these developments, the modeled transport equation for the subfilter scale stress

in a low Reynolds number version reads

D(τi j )SF S

Dt
= P1

i j + P2
i j + �1

i j + �2
i j + �w

i j + Ji j −
2

3
ǫSF Sδi j , (45)

where �w
i j is defined by

�w
i j = cwkSF S

(

Si j −
1

3
Smm

)

(1 − fw), (46)
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TABLE II. Functions used in the subfilter stress model.

Functions Expressions

Rt k2
SF S/(νǫSF S)

cSF S1
[c1 + c̄1(P/ǫ)] h(ηc)

cSF S2
3(cSF S1

− 2)

c1 2. + 1.4fw(Rt)

c̄1 c∗
1 fw(Rt )

c3 [c̄3 − c∗
3 I I 1/2]

fw 1 − exp [ − (Rt/190)4]

h (1 + αη1 η2
c )/(1 + αη2 η2

c )

� � = �a

(

ζ + (1 − ζ )
�b
�a

)

ηc (π k3/2)/[� (ǫSFS + ǫ<)]

cSF Sǫ2
cǫ1

+ [(cǫ2
− cǫ1

)/
(

1 + βη η3
c

)2/9
]

and cw is a constant coefficient. The damping function fw introduced in Eq. (46) satisfies the limiting

conditions lim Rt →0 fw (Rt ) = 0 and lim Rt →∞ fw (Rt ) = 1 implying that lim Rt →∞ �w
i j (Rt ) = 0

for not altering the model at high Reynolds number. The recommended function and constant co-

efficients used in Eq. (45) have been obtained in the present case by a tedious work of systematic

tuning and they are listed in Tables II and III. The present function cSF S1
involved in the slow

redistribution term satisfies the following constraint lim Rt →0 cSF S1
(Rt ) = 2 and is therefore consis-

tent with the two-component limit turbulence states implying that the flatness parameter defined by

A = 1 − 9(II/2 − III) where II = aijaji and III = aijajkaki denote the second and third invariants, re-

spectively, goes to zero at the walls, e.g., lim Rt →0 A(Rt ) = 0.65 The function c3 verifies the limiting

condition lim Rt →0 c3(Rt ) = 0. The value of the constant coefficient c̄3 is set to 0.8 for satisfying

the consistency with the rapid distortion theory for homogeneous strained turbulence in an initially

isotropic state.66 The constant coefficient cs used in the diffusion term Jij takes on the value 0.22.

The modeled transport equation for the subfilter dissipation rate ǫSFS Eq. (39) is also developed in a

low Reynolds number formulation for approaching walls as follows:

DǫSF S

Dt
= cSF Sǫ1

ǫSF S

kSF S

P − cSF Sǫ2

ǫSF S ǫ̃SF S

kSF S

+ Jǫ, (47)

where ǫ̃SF S = ǫSF S − 2ν(∂
√

kSF S/∂xn)2, xn being the normal coordinate to the wall. The quantity

ǫ̃SF S is introduced in Eq. (47) to prevent the destruction term to go to infinity as the wall is approached.

The values used in the original SSG model5 are cǫ1
= 1.44 and cǫ2

= 1.83. In the present case, the

values retained are cSF Sǫ1
= cǫ1

= 1.5 and cǫ2
= 1.9, so that the difference cǫ2

− cǫ1
approximately

remains the same. Moreover, for each set of coefficients, the ratio α = (cǫ2
− 1)/(cǫ1

− 1) which is the

key parameter for homogeneous rotating flows67 takes on close values, 1.80 and 1.88, respectively.

The diffusion coefficient cǫ is set to 0.18. The coefficient βη appearing in Eq. (43) is optimized to

βη = [2/(3CK )]9/2 ≈ 0.0355 corresponding to the Kolmogorov value CK = 1.4.4, 45 The coefficients

used in the function h are αη1 = 1.3/400 and αη2 = 1/400, respectively. The empirical coefficient

ζ is set to 0.8 for taking into account the anisotropy of the grids. The functions and coefficients

used in Eq. (47) are listed in Table III. If the cSF S2
term may cause numerical difficulties, it can be

suppressed. From a practical point of view, the homogeneous SSG model is recovered for ηc → 0

and Rt → ∞. As a result, one can finally remark that the present turbulence model takes a basic

TABLE III. Constants coefficients used in the pressure-strain term �ij.

Coefficients c∗
1 c̄3 c∗

3 c4 c5 cw

1.8 0.8 1.30 1.25 0.4 0.185
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formulation that embodies some advanced concepts of second-moment closures. It contains only a

few empirical terms acting at low Reynolds number.

IV. NUMERICAL METHOD AND CONDITIONS OF COMPUTATIONS

A. Numerical method

The numerical simulations are performed by using the research code developed by Chaouat.68–70

The governing equations of motion as well as the transport equations for the subfilter scale stresses

and dissipation-rate are integrated in time by an explicit Runge-Kutta scheme of fourth-order accu-

racy. The convective fluxes are computed by a quasi-centered scheme of second-order accuracy in

space. The code has been successfully calibrated on basic test cases such as the decay of homoge-

neous isotropic turbulence and the fully turbulent channel flows.4, 71 In practice, it must be pointed

out that the present simulations solving all the transport equations require only 30% more CPU time

than conventional LES simulations using eddy viscosity models. This is due to the basic form of the

transport equations which is well appropriate to vectorization and parallelization techniques.1, 70 As

shown in Table IV referring to engineering applications,1, 2, 45, 47 several flows have been simulated

in the past using the PITM and DSM models on different grids. For the PITM method requiring to

solve seven transport equations for (τ 11)SFS, (τ 12)SFS, (τ 13)SFS, (τ 22)SFS, (τ 23)SFS, (τ 33)SFS, and ǫSFS,

the higher cost is in fact highly compensated by the possibility of coarsening the mesh. So that the

PITM method allows a drastic reduction of the computational cost.

B. Practical convergence enhancement

As shown in Sec. III, the coefficient cSF Sǫ2
defined in Eq. (43) involving the ratio 〈kSFS〉/k

constitutes the key parameter of the PITM method. This coefficient induces a strong coupling

interaction between the subfilter-scale stress transport Eq. (18), the subfilter dissipation-rate

Eq. (39), and the filtered momentum Eq. (5) and it controls the behavior of the PITM method.

At each temporal iteration, the model works to bring the calculated 〈kSFS〉/k value close to the equi-

librium value, solution of Eq. (42) deduced from the theoretical Von Kármán energy spectrum E(κ)

given by Eq. (41). The equality is exactly reached only in strict equilibrium flows. The mechanism in

the ǫ equation can be viewed as a “return to equilibrium”process. In practice, with the aim to avoid

the model to reach a purely RANS or LES limiting behavior during the transition phase and also

to accelerate the numerical convergence towards the solution in the permanent state, a procedure49

which locally consists of modifying the coefficient cSF Sǫ2
to force the model to approach more

rapidly the expected energy ratio has been activated during the computations. The equilibrium en-

ergy ratio req = 〈kSFS〉/k given by Eq. (42) is then compared with the ratio value rCFD computed by

the simulation. The dynamic correction of the subfilter coefficient δcSF Sǫ2
is calculated by means of

the parameter rCFD/req as follows:

δcSF Sǫ2
= χ cSF Sǫ2

(

1 −
rC F D

req

)

, (48)

where χ is a constant parameter set to 0.1. This correction allows to adjust the coefficient cSF Sǫ2
to

get a closer estimate of the ratio rCFD = 〈kSFS〉/k. This procedure is applied during the transition

phase of the PITM simulations.

TABLE IV. Simulations of flows using DSM and PITM models.

Engineering applications Authors Turbulence model Grid points

Channel flows with wall injection Apte and Yang;72 DSM 8.96 × 106

Chaouat and Schiestel1 PITM 1.4 × 106

Channel flows with periodic hills Breuer at al.73 DSM 13.1 × 106

Chaouat45 PITM 2.4 × 105



045108-14 Bruno Chaouat Phys. Fluids 24, 045108 (2012)

C. Conditions of computations

The computational domain is of dimension 3δ × 2δ × δ in the streamwise, spanwise, and normal

directions, respectively, x1, x2, x3 and the rotation vector is oriented along the spanwise direction

as seen by Figure 1. The box size is sufficiently large for ensuring the vanishing of two-point

correlation functions in the streamwise direction. All the present simulations are performed on a

coarse grid 24 × 48 × 64 and on a medium grid 84 × 64 × 64 for assessing the performances of

the subfilter scale stress model and for checking the grid independence of solutions when the filter

with is changed. In the present case, the grid-points are distributed with non-uniform spacing taking

into account a refinement near the wall. The simulations are performed at the Reynolds number

Rτ = uτ δ/2ν = 386 based on the friction velocity uτ and the channel half width δ/2. A constant

pressure gradient term G = 2ρτ u2
τ/δ has been added in the motion equation to balance the friction

at the walls. For the coarse and medium grids, the first grid point in the direction normal to the

wall is located at the dimensionless distance �+
3 = �3 uτ/ν = 1.0. In the two remaining directions,

the grid spacing are of constant values. More precisely, the grid spacing �+
i is computed by the

relation �+
i = �i uτ/ν = 2L i Rτ/(Niδ) where Li and Ni denote the length of the computational

box in the ith direction and the number of grid points, respectively. For the coarse grid, one can

obtain easily �+
1 ≈ 96.5 and �+

2 ≈ 32.2 whereas for the medium grid, �+
1 ≈ 27.5 and �+

2 ≈ 24.1.

These values are strongly less stringent than the recommendations for wall-resolved LES.74 As a

consequence, the PITM simulations does not require extremely large memory and computing time

resource.

V. NON-ROTATING CHANNEL FLOWS

A. Computational framework

The PITM and Smagorinsky75 simulations are performed on the very coarse grid at the Reynolds

number Rτ = 386 or, equivalently, at the Reynolds number Rm = umδ/ν ≈ 14 000 based on the bulk

velocity um.

B. Mean velocity

The velocities and stresses are compared with data of direct numerical simulations76 as well as

highly resolved large eddy simulations.6 As a result, Figure 2 shows the profiles of the statistical

mean velocity 〈u1〉/uτ in logarithmic coordinates x+
3 = x3uτ/ν for both the PITM and Smagorinsky

simulations. It is found that the mean velocity predicted by the PITM agrees very well with the

DNS data. This result was expected since the velocity profile is mainly governed by the model that

behaves like the statistical Reynolds stress model (RSM) in the wall region, as it will be seen in

the following. This result demonstrates that the formulation of the low Reynolds number turbulent

model presented in Sec. III is well appropriate for accurately reproducing the boundary layer. In

the contrast to the PITM velocities, the Smagorinsky velocities strongly deviate from the DNS data

because of the mismatch that occurs in the logarithmic region. The mean velocity is overpredicted

by about 50% with respect to the DNS data.

C. Turbulent shear stress

Figure 3 displays the mean shear stress τ13/u2
τ as well as the subfilter and resolved stresses

〈(τ13)SF S〉 /u2
τ and 〈(τ13)L E S〉 /u2

τ , respectively, for both simulations. The mean shear stress is com-

puted as the sum of the subfilter and resolved stresses. One can see that the mean shear stress returned

by the PITM simulation presents an excellent agreement with the DNS data and that the one provided

by the SM simulation also agrees relatively well with the DNS. A better result is however obtained

by the PITM because the shear stress is directly computed by its transport equation whereas it is eval-

uated by the Boussinesq hypothesis for the Smagorinsky model. For both simulations, the agreement

with the DNS data results from the balance between the mean pressure gradient in the streamwise

direction and the mean shear stress gradient in the normal direction to the walls. It is of interest to
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FIG. 2. Mean velocity profile 〈u1〉/uτ in logarithmic coordinate. (a) PITM1 (24 × 48 × 64) ◦. (b) SM (24 × 48 × 64) ◦.

DNS:76 —. Rτ = 395; Rm ≈ 14 000.

analyze the sharing out of turbulence energy among the modeled and resolved turbulence scales.

From Figure 3, the evidence is clear that the modeled stress is of higher intensity than the resolved

stress in the near wall region whereas the reverse situation occurs in the center of the channel. This

outcome was also obtained by Fadai-Ghotbi et al.48, 49 when performing numerical simulations of

turbulent channels flows on coarse, medium, and refined grids using the TPITM method. For the

PITM simulation, this results was partially expected because the model behavior is governed by

the cSF Sǫ2
dynamic parameter which depends on the parameter ηc = κcLe, interpreted as the ratio

of the turbulent length-scale to the grid-size πLe/�. Near the walls, the parameter ηc goes to zero

because the turbulent length-scale reduces to zero while it reaches high values in the core flow.

So that this result means that the subfilter model behaves more or less like a RANS model in the

near wall region and LES in the core flow. For the SM simulation, the present distribution between

the modeled and resolved parts of energy simply means that the core flow is dominated by the

large-scales.
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FIG. 3. Turbulent shear stress τ13/u2
τ (a) PITM1 (24 × 48 × 64). (b) SM (24 × 48 × 64). τ13/u2

τ : ◦; 〈(τ13)SF S〉 /u2
m : ∇;

(〈τ13)L E S〉 /u2
m : △; DNS:76 —. Rτ = 395; Rm ≈ 14 000.

D. Turbulent normal stresses

Figure 4 shows the normal turbulent Reynolds stresses τ
1/2

i i /uτ computed as the sum of the

subfilter stresses 〈(τ ii)SFS〉1/2/uτ and the resolved stresses 〈(τ ii)LES〉1/2/uτ for the PITM simulation

as well as the resolved stresses for the SM simulation. One has to keep in mind that for the PITM

simulation, the normal subfilter stresses are solution of the system (18) of transport equations. But for

the SM simulation using the Boussinesq hypothesis assuming a linkage between the stress and strain

components, there is no means at all of computing the normal turbulent stresses. It can be pointed out

that only transport turbulent models including at least one transport equation for a turbulent quantity,

usually the subgrid turbulent energy, can provide the normal subgrid stresses. As a result, the PITM

stresses present a relatively good agreement with the DNS data although the intensity of the turbulent

stresses is slightly overpredicted in the channel. The turbulent peaks near the walls are well captured

by the PITM simulation but not their rapid drops reproduced by the DNS data. As previously found

for PITM channel flow simulations,1, 4 this slight remaining discrepancy with the DNS data mainly

results from the numerical scheme diffusion effects attributed to the mesh discretization errors.

As expected, better agreements with DNS are obtained for refined grids.1, 4 On the other hand,

the SM simulation returns resolved turbulent stresses which highly disagree with the DNS data.

The streamwise stress is highly overpredicted everywhere in the channel whereas the spanwise and

normal stresses are underpredicted. The discrepancies with the reference data are in fact greater

than those observed in this figure because the modeled energy has not be taken into account in the

computation. This disagreement with the data must be attributed to the very coarse grid resolution.

Indeed, because of its simple formulation based on equilibrium assumptions, the Smagorinsky

model requires very refined grids for providing accurate results. These present results indicate that
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FIG. 4. Turbulent Reynolds stresses τ
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× 64) △: i = 1; ⊳: i = 2; ⊲: i = 3. DNS:76
�: i = 1, ◭: i = 2, ◮: i = 3. DNS:76

�: i = 1, ◭: i = 2, ◮: i = 3. Rτ = 395;

Rm ≈ 14 000.

SM computations are not able to reproduce correctly turbulent flows performed on coarse grids.

Relatively to viscosity-based subgrid models, this study demonstrates the advantages of applying

the present sufbilter stress model developed in the framework of second-moment closures.

VI. ROTATING CHANNEL FLOWS

A. Computational framework

Considering these results, it is not worth simulating rotating channel flows on such coarse

grids by using the Smagorinsky model, the rotating channel flows being of much more complex

physics than non-rotating channel flows. Consequently, only PITM simulations are processed in

the following. In this work, the turbulent rotating flows are simulated at the Reynolds number
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Rτ = 386 corresponding to the bulk Reynolds number Rm ≈ 14 000 at different values of the

rotation number Ro = �δ/um varying from moderate, medium, and very high rotation rates

Ro = 0.17, 0.50, and 1.50 on the coarse and medium grids. This choice is motivated by the study

of the consistency of the subfilter model when the filter width is changed. In addition, the rotating

channel flow is also performed on the refined grid 124 × 84 × 84 at Ro = 1.50 to prove in practice

that the PITM method reverts to standard highly resolved LES as the grid-size decreases. Note that

in the literature, rotating flows are sometimes characterized by the Rossby number defined by Rgm

= 3um/δ� which is directly related to the rotation number by Rgm = 3/Ro. As shown in Figure 1,

the vector rotation is along the spanwise direction x2. The PITM results including the velocities and

stresses are compared with the data of highly resolved LES simulation performed by Lamballais

et al.6, 18 using the spectral-dynamic model derived from the eddy-damped quasi normal Markovian

statistical theory.24, 77

B. Mean velocity

Figures 5–7 show the mean dimensionless velocity profiles normalized by the bulk velocity

〈u1〉/um versus the global coordinates for both rotation regimes and for each grid. Because of the

rotation effects, one can see that the mean velocity presents an asymmetric character which is more
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FIG. 5. Mean velocity profile 〈u1〉/um in global coordinate. (a) PITM1 (24 × 48 × 64): ◦; (b) PITM2 (84 × 64 × 64): ◦;

Highly resolved LES:6 —. Rm = 14 000, Ro = 0.17.
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FIG. 6. Mean velocity profile 〈u1〉/um in global coordinate. (a) PITM1 (24 × 48 × 64): ◦; (b) PITM2 (84 × 64 × 64): ◦;

Highly resolved LES:6 —. Rm = 14 000, Ro = 0.50.

and more pronounced as the rotation rate increases from Ro = 0.17 to 1.50. At high rotation rate,

one can observe that the mean velocity profile is very close to a parabolic shape corresponding

to the laminar Poiseuille profile in the cyclonic wall region. Overall, one can see that both PITM

simulations provide mean velocity profiles that agree very well with the reference data,6 even for

the PITM1 simulation performed on the coarse grid. For both simulations performed at Ro = 0.17,

0.50, and 1.50, one can notice that the mean velocity profile exhibits a linear region of constant

shear stress in the nearly whole channel although this is less marked at the lower rotation rate

Ro = 0.17. More precisely, the computation indicates that the slope of the mean velocity gradient

∂〈u1〉 /∂x3 is approximately equal to 2�2, and corresponds to a nearly-zero mean spanwise absolute

vorticity vector, i.e., 〈W2〉 = 〈ω2〉 + 2�2 ≈ 0 where ωi = ǫijk∂uk/∂xj represents the vorticity

vector, as already noticed experimentally by Johnston et al.8 By considering the Richardson number

defined as

Ri =
−�2(〈S13〉 − �2)

〈S13〉2
, (49)
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FIG. 7. Mean velocity profile 〈u1〉/um in global coordinate. (a) PITM1 (24 × 48 × 64): ◦; (b) PITM2 (84 × 64 × 64): ◦;

(c) PITM3 (124 × 84 × 84): ◦; Highly resolved LES:6 —. Rm = 14 000, Ro = 1.50.
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it simple matter to show that this particular portion of the profile represents in fact a region of

neutral stability Ri ≈ 0. On the cyclonic side, the rotation stabilizes the flow whereas on the

anticyclonic side, it destabilizes the flow because the Richardson number Ri is either positive or

negative.78

C. Turbulent shear stress

Figures 8–10 display the subfilter, resolved, and total turbulent shear stresses denoted

〈(τ13)SF S〉 /u2
τ , 〈(τ13)L E S〉 /u2

τ , and τ13/u2
τ for the PITM simulations performed at each rotation

rate. As shown in Sec. V concerning the non-rotating case, these figures clearly indicate that the

subfilter stress model behaves more or less like the RANS/RSM model in the near wall region,

although the grid is very refined in the normal direction to the wall, and like LES in the core flow.

One can observe that the distribution of the turbulent shear stress energy between the modeled and

resolved parts is modified according to the location of the cutoff wave number which varies versus

the grid size of the mesh, but the total shear stress energy remains almost the same and agrees

relatively well with the reference data of the highly resolved LES. More precisely, the SFS part of

the shear stress associated to the coarse grid appears larger than the one observed for the medium

grid whereas the reverse situation occurs for the resolved part of the shear stress. The case performed

at the rotation rate Ro = 1.50 deserves a particular attention since the shear stress vanishes in the

cyclonic region which roughly extends from the half channel-width to the upper wall, confirming

that the turbulence activity dramatically decreases to zero. Only, a turbulent peak is visible in the

vicinity of the anticyclonic region. As expected, the PITM3 simulation performed on the refined grid

returns a quasi-zero SFS part of the shear stress so that the turbulent contribution is nearly entirely
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FIG. 8. Turbulent shear stress τ13/u2
m . (a) PITM1 (24 × 48 × 64); (b) PITM2 (84 × 64 × 64); τ13/u2

m : ◦; (〈τ13)SF S〉 /u2
m :

∇; (〈τ13)L E S〉 /u2
m : △; Highly resolved LES:6 — . Rm = 14 000, Ro = 0.17.
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FIG. 9. Turbulent shear stress τ13/u2
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given by the resolved part. This result is not at all surprising since the PITM3 simulation goes to

highly resolved LES.

D. Turbulent normal stresses

Figures 11–13 show the streamwise, spanwise, and normal turbulent stresses, τ
1/2

11 /uτ , τ
1/2

22 /uτ ,

and τ
1/2

33 /uτ for both PITM simulations performed at the rotation rates Ro = 0.17, 0.50, and 1.50. The

distribution of the turbulence appreciably differs between the non-rotating and rotating cases, the

flow anisotropy being strongly modified. When the rotation rate is increased, the turbulence activity

of the flow decreases in the whole channel but the decrease is more pronounced in the cyclonic wall

region than in the anticyclonic wall region. More precisely, the intensity of the streamwise stress

τ 11 near the anticyclonic side decreases whereas the intensities of the spanwise and normal stresses

τ 22 and τ 33 increase in the channel. This result suggests that the turbulence evolving in the cyclonic

region originates from flow interactions acting in the anticyclonic region. For each stress profile

plotted in Figures 11–13, a relatively good agreement is observed between the PITM and reference

data, even if the PITM2 simulation returns better results than the PITM1 simulation because of the

grid refinement in the streamwise and spanwise directions allowing a better flow resolution. At the

highest rotation rate Ro = 1.50, the agreement with the data is, however, less encouraging because of

the discrepancies which appear in the anticyclonic wall region. As expected, the PITM3 simulation

returns very good results. Overall, the mean features of the rotating flows are well recovered by

the PITM simulations with a sufficient fidelity from an engineering point of view, in particular, the

decrease of the turbulence activity as the rotation rate increases and the strong modification of the
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FIG. 10. Turbulent shear stress τ13/u2
m . (a) PITM1 (24 × 48 × 64); (b) PITM2 (84 × 64 × 64); (c) PITM3 (124 × 84

× 84); τ13/u2
m : ◦; 〈(τ13)SF S〉 /u2
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045108-24 Bruno Chaouat Phys. Fluids 24, 045108 (2012)

0 0.2 0.4 0.6 0.8 1

x
3
/δ

0

0.05

0.1

0.15

(a)

(b)

0.2

0 0.2 0.4 0.6 0.8 1

X
3
/δ

0

0.05

0.1

0.15

0.2

FIG. 11. Turbulent Reynolds stresses τ
1/2
i i /um . (a) PITM1 (24 × 48 × 64); (b) PITM2 (84 × 64 × 64); △: i = 1; ⊳: i = 2;

⊲: i = 3. Highly resolved LES:6 �: i = 1, ◭: i = 2, ◮: i = 3. Rm = 140 00, Ro = 0.17.

flow anisotropy. In the present case, the subfilter stress model is able to reproduce the flow anisotropy

on such coarse grids because of the pressure-strain correlation term that redistributes the turbulent

energy among the different stress components. As it was emphasized, this term appearing only in

second-moment closures is essential and demonstrates the usefulness of the present sufbilter stress

model.

E. Sharing out of the turbulent energy

As shown in the Sec. III D, the subfilter stress model is mainly governed by the function

cSF Sǫ2
(ηc) that acts like a dynamic parameter which controls the spectral distribution. So that it is

worth analyzing the sharing out of the turbulent energy among the subfilter and resolved turbulence

scales for rotating flows. Figure 14 shows the ratio of the subfilter energy to the total energy at

different rotation rates Ro = 0.17, 0.50, and 1.50 computed by the Von Kármán spectrum E(κ) and

the PITM1 simulations, respectively.

At the moderate rotation rate Ro = 0.17, one can see that the values of the equilibrium and

computed ratios 〈kSFS〉/k are very close to each other and that the model behaves more or less like

the RANS model in the wall regions although the grid is very refined in the normal direction and

like LES in the core flow where roughly 80% of energy is simulated whereas 20% is modeled. When
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FIG. 12. Turbulent Reynolds stresses τ
1/2
i i /um . (a) PITM1 (24 × 48 × 64); (b) PITM2 (84 × 64 × 64); △: i = 1; ⊳: i = 2;

⊲: i = 3. Highly resolved LES:6 �: i = 1, ◭: i = 2, ◮: i = 3. Rm = 14 000, Ro = 0.50.

comparing Figures 14(a)–14(c) at a given station in the channel for different rotation rates, one can

observe that the ratio of the modeled energy to the total energy progressively decreases. Relatively to

the total turbulence energy which decreases itself as the rotation intensifies, this result means that the

modeled energy decreases more rapidly than the resolved energy implying that the subfilter model

is less and less active. This rotation effect is particularly marked in the cyclonic wall region due to

the fact that the computed ratio 〈kSFS〉/k of the PITM1 simulation at Ro = 1.50 dramatically reduces

to zero. In this region, the value of the computed ratio rCFD = 〈kSFS〉/k strongly differs from the

equilibrium ratio value req suggesting that the flow departs from the spectral equilibrium. Different

reasons can explain this outcome. The recent simulations of Grundestam et al.20 and Brethouwer

et al.21 have revealed the presence of large streamwise vortices evolving in time and space in

the channel. As a result, these authors put in evidence the presence of quasi-periodic instabilities

corresponding to intense bursting events in the cyclonic wall region of the flow at Ro = 1.3 and 1.5.

These findings clearly show that rotating flows at high rotation rates are out of spectral equilibrium

and that the cascading process must be consequently modified in comparison with the equilibrium

one. In this case, it is not surprising if the ratio values req and rCFD differ from each other. This result

only means that the model is able to take into account situations of non-equilibrium flows although

the mechanism formulated in the dissipation-rate equation traduces the return to equilibrium. As the

rotation rate increases, another point to mention relates to the profiles of the ratio 〈kSFS〉/k which

become more and more asymmetric with respect to the channel center. So that, the dissipation-rate
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FIG. 13. Turbulent Reynolds stresses τ
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i i /um . (a) PITM1 (24 × 48 × 64); (b) PITM2 (84 × 64 × 64); (c) PITM3 (124
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equation is directly affected by the rotation through the coefficient cSF Sǫ2
which is a function of

〈kSFS〉/k. In addition to the Coriolis forces that are embedded in the transport equations for the

subfilter stresses as source terms, this is the reason which explains why the subfilter model is very

sensitive to the rotation. This interdependence between the turbulent coefficients and the transport

equations also induces a strong coupling between the turbulent stress field and the mean velocity.

F. Qualitative flow structures

Figures 15–17 show the isosurfaces of the instantaneous vorticity modulus for both the PITM1

and PITM2 simulations performed on the coarse and medium grids at different rotation rates

Ro = 0.17, 0.50, 1.50 and also for the PITM3 simulation performed on the refined grid at the highest

rotation rate Ro = 1.50. A first glimpse of sight reveals that the PITM2 and PITM3 simulations provide

some dynamical elements of the flow in wall turbulence and clearly illustrate the three-dimensional

nature of the flow although the geometry is two-dimensional. For the PITM1 simulations, these

structures are not explicitly appearing on the coarse grid for the same value of the vorticity modulus.

In fact, they are still present in the flow but are very weak and emerge at lower value of the

vorticity modulus. Indeed, the more the grid is coarse, the more the flow structures are weak and

smoothing varying, the mesh acting like a low-pass filter that reduces high frequencies. Obviously,

the coarse and medium grids are not sufficiently refined in the streamwise and spanwise directions

to get quantitative DNS or highly resolved LES results.6 But it is remarkable that the present PITM

simulations, in spite of their coarse grids, succeed in satisfactorily reproducing these structures from

a qualitative point of view. As a result, the PITM3 simulation performed on the refined grid is able

to quantitatively reproduce these dynamical structures at Ro = 1.50 because this one captures both

FIG. 15. Isosurfaces of vorticity modulus ω = 3um/δ = 8 × 105. Rm = 14 000, Ro = 0.17. (a) PITM1 (24 × 48 × 64);

(b) PITM2 (84 × 64 × 64).
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FIG. 16. Isosurfaces of vorticity modulus ω = 3um/δ = 9 × 105. Rm = 14 000, Ro = 0.50. (a) PITM1 (24 × 48 × 64);

(b) PITM2 (84 × 64 × 64).

large scales and also smaller scales like the highly resolved LES (Ref. 6) due to the grid refinement

effects. In that sense, it is clear that the PITM3 simulation reverts to standard highly resolved LES

as the grid size is reduced. This result is not at all surprising since the subfilter model goes to the

Smagorinsky model when ηc is large as demonstrated in references4, 49 using spectral equilibrium

equations. When comparing these figures, on the one hand, one can see that the turbulence activity

is gradually reduced near the cyclonic wall as the rotation rate is increased. On the other hand,

a strong turbulence activity brought to light by the presence of very large-scale longitudinal roll

cells, as previously observed by experimental flow visualization8 and captured by highly resolved

LES,6 is visible in the anticyclonic wall region. The present investigation of the structural aspects of

the flows provides some insights of the turbulence that correspond fairly well with the distribution

of the turbulent energy in the channel. Figures 15–17 reveal other elements of interest concerning

the development of the evolving flow structures. It appears that the flow becomes more and more

organized as the rotation rate increases. In particular, this rotation effect is particularly visible at

the highest rotation rate Ro = 1.50, as shown in Figure 17 describing quasi-organized longitudinal

roll cells in the anticyclonic wall region. Although qualitative results are obtained for the PITM2

simulation, one can see that these vorticity roll cells appearing at the rotation rate Ro = 1.50 are

less inclined with respect to the wall than those simulated at the lower rotation rates Ro = 0.17 and

0.50. This tendency of the rotation on the flow structures is physically well recovered by the PITM

simulations. Indeed, as previously investigated by means of highly resolved LES,6 the vorticity

vectors are less inclined from 45◦ to 10◦-15◦ when the rotation rate is increased from Ro = 0 to 1.50.

On the basis of these elements, this section demonstrates in a practical point of view that the PITM

method is basically different from the URANS approach. This one only provides mean organized

structures because of its long time averaging.
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FIG. 17. Isosurfaces of vorticity modulus ω = 3um/δ = 12 × 105. Rm = 14 000, Ro = 1.50. (a) PITM1 (24 × 48 × 64);

(b) PITM2 (84 × 64 × 64); (c) PITM3 (124 × 84 × 84).

VII. CONCLUDING REMARKS

The PITM method has been applied for devising a subfilter-scale stress model to account for

rotation in the framework of SMC. In this study, the pressure-strain correlation term encompassed in

this model has been inspired from the nonlinear SSG model5 initially developed for homogeneous

rotating flows in RANS methodology. The subfilter-scale stress model has been formulated especially

in a low Reynolds number version for accurately capturing the mean velocity and turbulent stresses in

the wall boundary layer. Then, it has been used for simulating large scales of rotating turbulent flows

on coarse and medium grids at moderate, medium, and high rotation rates. As a result, it has been

found that the PITM simulations have reproduced fairly well the mean features of rotating channel

flows with a sufficient fidelity from an engineering point of view allowing in the present case a
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drastic reduction of the computational cost in comparison with those required for performing highly

resolved LES. Overall, the mean velocities and turbulent stresses were found in good agreement

with the data of highly resolved LES (Ref. 6) and the anisotropy character of the flow resulting from

the rotational effects has been well reproduced in accordance with the reference data. The PITM2

simulations performed on the medium grid have qualitatively well predicted the three-dimensional

flow structures including the longitudinal roll cells that develop in the anticyclonic wall-region. It

is the feeling of the author that the present model can be used for simulating other complex flows

encountered in turbomachinery industry, provided the numerical procedure is sufficiently robust to

solve the system of transport equations.

APPENDIX: OBJECTIVITY OF THE PRESSURE-STRAIN CORRELATION TENSOR �ij

The question is to determine whether the exact and modeled pressure-strain tensors �ij are

objective tensors in a mathematical sense. A tensor is said to be objective if it remains unchanged

under an arbitrary dependent rotation and a translation of the spatial frame of reference given by

x∗ = Q(t) x + b(t), t∗ = t + c, (A1)

where c is a constant coefficient, b is a time-dependent vector, and Q is any time-dependent proper

orthogonal tensor verifying the well-known relation,

Q̇km Qlm = −Q̇lm Qkm = ǫmkl�m, (A2)

and implying that Q is an antisymmetric tensor.16 In LES methodology79–81 including the PITM

method, the instantaneous velocity transforms as

u∗
i = Qimum + Q̇im xm + ḃi . (A3)

The filtered velocity ūi is then obtained by applying the general definition (3)

u∗
i (x∗) =

∫ ∫ ∫

D

G�(x∗ − x′∗)
[

Qimum + Q̇im xm + ḃi

]

(x′∗) d3x ′∗. (A4)

If we restrict the filtering process to the particular case of isotropic filters,79 the filtering process

does not depend on the frame of reference, i.e., G�(|x∗ − x′∗|) = G�(|x − x′|). Then, the filtered

velocity can be computed by means of a change of variable

u∗
i (x) =

∫ ∫ ∫

D

G�(|x − x′|)
[

Qimum + Q̇im xm + ḃi

]

∣

∣

∣

∣

∂x′∗

∂x′

∣

∣

∣

∣

(x′) d3x ′, (A5)

where |∂x′∗/∂x′| denotes the determinant of the jacobian matrix. As Q is a proper orthogonal tensor,

the determinant is equal to unity so that Eq. (A5) leads to the result

u∗
i = Qim ūm + Q̇im x̄m + ḃi . (A6)

Using the fact that G is an even function while x is an odd function, one can demonstrate that

x̄ = x .79 The subgrid fluctuating velocity is then obtained by subtracting Eq. (A6) from Eq. (A3)

leading to the result

u′∗
i = Qimu′

m (A7)

showing that it is invariant. We will now establish the frame invariance of the exact pressure-strain

correlation term given by Eq. (22). The pressure is frame-indifferent, the concept of force being

frame-independent. So that we consider that p∗ = p̄ and p′* = p′. By using the chain rule of

differentiation,

∂

∂x∗
i

=
∂xm

∂x∗
i

∂

∂xm

= Qim

∂

∂xm

, (A8)

we obtain the expressions for the gradients of the mean and fluctuating velocities as follows:

∂u∗
i

∂x∗
j

= Qim Q jn

∂ ūm

∂xn

+ Q̇im Q jm, (A9)
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and

∂u′∗
i

∂x∗
j

= Qim Q jn

∂u′
m

∂xn

. (A10)

Because of Eq. (A2), the transformation of the mean strain term is then given by

S∗
i j = Qim Q jn Smn. (A11)

Like in RANS modeling,82 it is then simple matter to show that the exact pressure-strain term �∗
i j

is an objective tensor since it obeys the tensorial rule transformation as follows:

�∗
i j = �(p∗, S∗

i j ) = 2(p∗S∗
i j − p̄∗S∗

i j )
/

ρ = 2(p Qim Q jn Smn − p̄ Qim Q jn Smn)
/

ρ = Qim Q jn�mn.

(A12)

Now, we examine the transformation of the modeled pressure-strain term �ij = �ij(aij, Sij, Wij)

including the terms �1
i j and �2

i j defined by Eqs. (33) and (35) under the change of frame. This term

�∗
i j is determined by replacing aij, Sij, and Wij by a∗

i j , S∗
i j , and W ∗

i j , respectively. Since the anisotropy

tensor aij defined in Eq. (34) is computed with (τ ij)SFS, we need to compute first the subfilter stress

tensor (τ ∗
i j )SF S under the change of frame. Applying the tensor rules given by Eq. (A6), it is found

after some analytical developments that (τ ij)SFS transforms as

(τ ∗
i j )SF S = Qim Q j p(τmp)SF S + Qim Q̇ j p

[

um x p − ūm x p

]

+ Q jm Q̇i p

[

xmu p − xm ū p

]

+Q̇im Q̇ j p

[

xm x p − xm x p

]

(A13)

showing that (τ ∗
i j )SF S is not an objective tensor in LES methodology. More precisely, Eq. (A13)

indicates that it depends on the motion of the frame of reference through the rotation but is frame

indifferent through the translation. But as the additional terms appearing in the right-hand side of

Eq. (A13) are small in comparison with the first term, we can admit that the subfilter stress tensor

(τ ij)SFS transforms as

(τ ∗
i j )SF S ≈ Qim Q j p(τmp)SF S. (A14)

Using Eq. (A9), the absolute filtered vorticity tensor W
∗
i j transforms as

W ∗
i j = Qim Q j pW mp, (A15)

thanks to Eq. (A2). Taking into account Eqs. (A11), (A14), and (A15), we finally found that the

modeled pressure-strain correlation term �ij transforms as

�
∗ = �(a∗, S∗, W∗) = �( Qa QT , QS QT , QW QT ) ≈ Q�(a, S, W ) QT . (A16)

In a mathematical sense, Eq. (A16) indicates that the modeled term �ij is not an objective tensor

but only an approximation. In the case where this approximation holds, �ij is an isotropic tensor

function of its arguments.83
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