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1 Introduction
Turbulent flows involving the transport of pas-

sive scalar are encountered in many fields of ap-
plications (Hanjalic and Launder, 2011) and are
often simulated using different methods rang-
ing from DNS, LES, RANS and RANS/LES
(Chaouat, 2017). In this work, we consider the
partially integrated transport modeling (PITM)
method (Chaouat and Schiestel, 2005) using a
second moment closure (SMC) that allows to
perform simulations with seamless coupling be-
tween the RANS and LES regions and we extend
this method to the case of passive scalar trans-
port. We derive the basic transport equations for
both the scalar variance of fluctuations kθ and its
dissipation-rate εθ in the spectral space (Chaouat
and Schiestel, 2021). We perform then numerical
simulations of turbulent channel flows including
passive scalar fields on relatively coarse grids at
the Reynolds number Rτ = 395 for the Prandtl
numbers Pr = 0.1, 1 and 10 associated with
heat transfer of liquid metals, gas and water (see
Fig 1). Comparison are made with DNS data
(Chaouat and Peyret, 2019).

2 The basics of the PITM method for
turbulent fields

From a physical standpoint, the PITM method
finds its basic foundation in the spectral space of
wave numbers considering the production, trans-
fer and dissipation processes of energy acting in
spectral wave number ranges of the spectrum.
The starting point is the transport equation of the
spherical mean of the Fourier transform of the

two-point correlation tensor of the fluctuating ve-
locities denoted ϕij(X, κ, t) as follows (Chaouat
and Schiestel, 2005; 2007; 2013)

∂ϕij(X, κ, t)

∂t
+ 〈uj〉 (X)

∂ϕij(X, κ, t)

∂Xj

= Pij(X, κ, t) + Tij(X, κ, t) + Ψij(X, κ, t)

+Jij(X, κ, t)− Eij(X, κ, t) (1)

where Pij , Tij , Ψij , Jij , and Eij are respectively,
the production, transfer, redistribution, diffusion
and dissipation terms, the brackets 〈.〉 denotes the
averaging in homogeneous directions of the flow.
The PITM equations are then formally obtained
from integration of Equation (1) in the wave num-
ber ranges [0, κc], [κc, κd] and [κd,∞[, where
κc is the cutoff wave number linked to the filter
size ∆ by κc = π/∆, and κd is the dissipative
wave number located at the far end of the iner-
tial range of the spectrum. As a result (Schiestel
and Dejoan, 2005; Chaouat and Schiestel, 2005,
2009, 2012), the transport equation for the subfil-
ter scale stress (SFS) tensor (τij)s can be written
in the simple compact form as

∂(τij)s
∂t

+
∂

∂xk
(ūk(τij)s) = (Pij)s

+(Πij)s − εij + (Jij)s (2)

where the terms appearing in the right-hand side
of this equation are identified as subfilter produc-
tion, redistribution and dissipation, respectively
while the transport equation for the dissipation
rate ε can be expressed into the form

∂ε

∂t
+

∂

∂xk
(ūkε) = cε1s

ε

ks
Ps− cε2s

ε2

ks
+Jεs (3)

the bar .̄ denotes the filtering. The coefficient ap-
pearing in the destruction term of Equation (3) is



then given by

cε2s = cε1 +
ks
k

∆cε (4)

where ∆cε = cε2 − cε1 , cε1 and cε2 are the co-
efficients used in RANS and cε1s = cε1 . Us-
ing an equilibrium density spectrum defined as
E(κ) = kLE∗(ϑ), where L denotes the turbu-
lence length-scale L = k3/2/ε, ϑ = κL,

E∗(ϑ) =
2
3βϑ

α−1

[1 + βϑα]γ+1 (5)

one can obtain after integration

cε2s = cε1 +
∆cε

[1 + βϑαc ]γ
(6)

where αγ = 2/3 and β = [2/(3CK)]γ , CK is the
Kolmogorov constant close to 1.5, ϑc = κcL,

Turbulent passive scalar field. We extend
here the PITM method developed for dynamic
turbulent fields to scalar fields. As for the pre-
ceding section, the key is to work in the spec-
tral space. The spectral transport equation of
half the scalar variance denoted as Eθ(X, κ) =
〈θ′θ′(X)〉∆ (κ)/2 reads (Chaouat and Schiestel,
2021)

∂Eθ(X, κ)

∂t
+ 〈uk〉 (X)

∂Eθ(X, κ)

∂Xk

= Pθ(X, κ) + Tθ(X, κ) + Jθ(X, κ)

−Eθ(X, κ) (7)

where in the right hand side of this equation, Pθ
is the production of half the scalar variance by
mean gradients of the scalar, Tθ is the spectral
transfer driven by the eddying motions in the in-
ertial cascade, Jθ is the diffusion term and Eθ de-
notes the dissipation term of half the scalar vari-
ance. Equation (7) is integrated in the domains
[0, κc], [κc, κe] and [κe,∞[ where κe denotes here
the high end wave number for the scalar that is
larger than κc and different from κd. Homoge-
neous flows are considered in the following. As a
result, the transport equation for the subfilter scale
variance kθs can be written formally as

∂kθs
∂t

= Pθ[κc,κe] + Fθ(κc, t)− εθ (8)

where the total variance transferFθ(κe, t) through
the variable cutoff κe is defined as

Fθ(κc, t) = Fθ(κc, t)− Eθ(κc, t)
∂κc
∂t

(9)

that takes into account the local spectral flux
Fθ(κc, t) and the transfer due to the variation in
the splitting wavenumber and

Fθ(κe, t) = Fθ(κe, t)− Eθ(κe, t)
∂κe
∂t

(10)

The relation κe − κc = O(1/lθ) = O(εθ/θ
2u)

leads to the equation

κe − κc = ζθ
εθ

kθsk
1/2
s

(11)

where ζθ is an adjustable coefficient chosen such
that the spectral contribution of the variance be-
yond κe is negligible. Combining these equations
together yields in homogeneous flows

∂εθ
∂t

=
εθ
kθs

∂kθs
∂t

+
εθ

2ks

∂ks
∂t

+
εθ

κe − κc

[
Fθ(κe, t)− Fθ(κe, t)

Eθ(κe, t)

]
− εθ
κe − κc

[
Fθ(κc, t)− Fθ(κc, t)

Eθ(κc, t)

]
(12)

Using the transport equations for ks and Equation
(3), one can obtain the resulting equation for the
dissipation-rate εθ written in a more general form
as

∂εθ
∂t

= cεθθ1sPθs
εθ
kθs

+ cεθk1sPs
εθ
ks
− cεθk2s

εθε

ks

−cεθθ2s
ε2θ
kθs

(13)

where
Pθs = Pθ[κc,κe] + Fθ(κc) (14)

cεθθ1s = 1, cεθk1s = 1/2, cεθk2s = 1/2,

cεθθ2s = 1− kθs
κeEθ(κe)

(
Fθ(κe)
εθ

− 1

)
(15)

assuming that κc � κe, E(κd) � E(κc), and
Eθ(κe) � Eθ(κc), and also considering that
Fθ(κe) = εθ. When κc goes to zero, that is to
say when the filter width in physical space goes
to infinity in an homogeneous turbulence field
(or locally homogeneous), one recovers the equa-
tion used in statistical RANS closure. Hence, the
equation can be written as

∂εθ
∂t

= cεθθ1Pθ
εθ
kθ

+ cεθk1P
εθ
k
− cεθk2

εθε

k

−cεθθ2
ε2θ
kθ

(16)



where cεθθ1 = 1, cεθk1 = 1/2, cεθk2 = 1/2,

cεθθ2 = 1− kθ
κeEθ(κe)

(
Fθ(κe)
εθ

− 1

)
(17)

The final transport equations for the subfilter
scalar variance kθs and its dissipation-rate εθ in-
cluding the convection and diffusion terms read

∂kθs
∂t

+
∂

∂xk
(ūkkθs) = Pθs − εθ + Jθs (18)

∂εθ
∂t

+
∂

∂xk
(ūkεθ) = cεθθ1Pθs

εθ
kθs

+ cεθk1Ps
εθ
ks

−cεθk2
εθε

ks
− cεθθ2s

ε2θ
kθs

+ Jεθs (19)

where cεθθ1 , cεθk1 , cεθk2 are constant coefficients
whereas cεθθ2s , combining Equations (15) and
(17), is now a dynamical coefficient given by

cεθθ2s = cεθθ1 +
kθs
kθ

∆cεθθ (20)

where ∆cεθθ = cεθθ2 − cεθθ1 . The variance ratio
in Equation (20) is computed considering differ-
ent spectra Eθ(κ) of the passive scalar associated
with small, medium and high Prandtl number.

Molecular Prandtl numbers near unity
The ratio kθs/kθ appearing in Equation (20) is

computed using the spectrum of the scalar in the
equilibrium range can be approximated by

Eθ(κ) = Cθεθε
−1/3κ−5/3 (21)

where Cθ is a constant coefficient close to 0.5.
The spectrum of the scalar θ given by Eq. (21)
is extended in the whole range domain of the
wavenumbers as

Eθ(κ) =
Cθεθ
CKε

E(κ) (22)

using the spectrum E(κ) = kLE∗(ϑ) where
E∗(ϑ) is given by Equation (5). The analytical in-
tegration yields the practical result given by Equa-
tion (A1) that is analogous to the formula previ-
ously obtained for the dynamical equations for ki-
netic energy.

Small molecular Prandtl numbers

This situation corresponds to the case of liq-
uid metals. The inertial subrange of the variance

spectrum is shorter due to high molecular dif-
fusivity. The spectrum of the scalar variance is
given by the function

Eθ(κ) = Cθεθε
−1/3κ−5/3 exp

[
−3

2
Cθ(κηθ)

4/3

]
(23)

with the scalar microscale defined by ηθ =(
σ3/ε

)1/4 where Cθ = 1.5. Using the Kolmoro-
gov scale ηK = (ν3/ε)1/4 and the Prandtl number
Pr = ν/σ, the scalar microscale can be computed
by ηθ = ηK/P

3/4
r . In practice, Equation (23) is

replaced by

Eθ(κ) = Cθεθε
−1/3κ−5/3H(κH − κ) (24)

where κH = 1/ηθ, and H is the Heaviside func-
tion implying that Eθ(κ) = 0 for κ ≥ κH .
The spectral vanishing value of wavenumber is
then obtained for κηθ = 1. So that the di-
mensionless variable ϑ is dropping for ϑH =
(PrRet)

3/4 where Ret = k2/νε denotes the tur-
bulent Reynolds number. This dropping value can
be expressed equivalently as ϑH = k3/2/(ηθ ε) =
(σk2/ε)3/4. Physically, the dimensionless group
PrRet is interpreted like the turbulent Peclet
number denoted Pet = PrRet. The exact final
expression of the coefficient cεθθ2s is obtain by
integrating the spectrum (24) leading to Equation
(A2).

Large molecular Prandtl numbers
This situation corresponds to the case of

poorly conducting fluids or high viscous fluids
like most of oils. The inertial subrange is fol-
lowed by a viscous-convective subrange with a
negative slope of minus unity and a viscous-
diffusive subrange in which the spectrum un-
dergoes strong decay. For the wave number
κ ≥ 1/ηK , it can be shown that the viscous con-
vective subrange of the spectrum is of the form

Eθ(κ) = cθεθ

(ν
ε

)1/2
κ−1 (25)

where cθ is a constant coefficient. The viscous
convective subrange is followed by the viscous-
diffusive subrange which is characterized by the
role of scalar diffusivity acting on very small
scales. In this region, the spectrum takes on the
form

Eθ(κ) = cθεθ

(ν
ε

)1/2
κ−1 exp

[
−cθ(κη∗θ)2

]
(26)

where η∗θ = ηK(σ/ν)1/2 = ηK/
√
Pr is the

smallest scale of the viscous-diffusive subrange



and cθ is a constant coefficient. The corre-
sponding wave numbers are then computed as
κK = 1/ηK and κS = 1/η∗θ . The junctions be-
tween the different curves occur for κ = κK and
κ = κS , respectively. In particular, for κ = κK ,
the spectrum Eθ(κK) given by Equation (21) of
the scalar in the equilibrium range with a slope
κ−5/3 is equal to the spectrum Eθ(κK) given by
Equation (25) of the viscous-convective subrange
with a slope κ−1, so that cθ = Cθ ≈ 1.5. The
dimensionless wave numbers ϑ = κL associated
with the Kolmogorov scale ηK and the smallest
scale η∗θ are ϑK = Re

3/4
t and ϑS = P

1/2
r Re

3/4
t ,

respectively. In practice, a simple approach is re-
tained. The spectrum given by Equation (26) is
replaced by a simple form as

Eθ(κ) = cθεθ

(ν
ε

)1/2
κ−1H(κS − κ) (27)

implying that Eθ(κ) = 0 for κ ≥ κS . The wave
number range [0, κS ] is then decomposed into two
wave number ranges introducing the cutoff wave
number κc where κc < κS or κc > κS . In the first
wave number range [0, κK ], the spectrum Eθ1(κ)

is defined as

Eθ1(κ) = ξ
kθ
k
E(κ) (28)

where E(κ) is given by Equation (5) whereas in
the second domain [κK ,∞[, the spectrum Eθ2(κ)
is deduced from Equation (27)

Eθ2(κ) = ξcθεθ

(ν
ε

)1/2
κ−1H(κS − κ) (29)

where ξ is a coefficient of normalization. An an-
alytical integration provides the exact expression
of the cεθθ2s coefficient given in Equation (A3).

3 PITM simulation of the channel flow
heated on both walls

As a generic test case, the fully developed
turbulent channel flow heated on both walls is
simulated. The variable θ is normalized by the
surface scalar flux defined as θτ = qw/(ρcpuτ )
where ρ, cp and qw are the fluid density, the spe-
cific heat at constant pressure and the heat flux
at the wall. The heat flux is given by qw =
−λ(∂θ/∂x3)w where λ stands for the thermal
conductivity λ = ρcpν/Pr.

——————————————————-

Case Pr ≈ 1

cεθθ2s = cεθθ1+∆cεθθ .G (A1)

with G = [1 + βϑαc ]−γ and αγ = 2/3 in practice α = 3, γ = 2/9 and β = (3CK/2)−γ

Case Pr � 1

cεθθ2s =

 cεθθ1 + ∆cεθθ
G −H
1−H

(ϑc < ϑH)

cεθθ1 (ϑc > ϑH)
(A2)

withH =
[
1 + βPe

3α/4
t

]−γ
Case Pr � 1

cεθθ2s =


cεθθ1 + ∆cεθθ

G − S + Z
1− S + Z

(ϑC < ϑK)

cεθθ1 + ∆cεθθ
cθ

εθ
kθ

(
ν
ε

)1/2
ln ϑS

ϑc

1− S + Z
(ϑK < ϑC < ϑS)

cεθθ1 (ϑS < ϑC)

(A3)

with S =
[
1 + βRe

3α/4
t

]−γ
and Z = cθ

εθ
kθ

(
ν
ε

)1/2
lnP

1/2
r
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Figure 1: Setup of the numerical channel flow simu-
lations subjected to heat fluxes.

Numerical procedure
The dimension of the channel in the stream-

wise, spanwise and normal directions along the
axes x1, x2, x3 are L1 = 6.4δ, L2 = 3.2δ and
L3 = 2δ. The grid resolutions are 84 × 42 × 84
for Pr = 0.1, 1 and 84 × 42 × 128 for Pr = 10,
respectively. The mesh is uniform in the stream-
wise and spanwise directions, ∆+

1 = ∆+
2 = 30,

while in the direction x3, the grid is refined near
the walls. The Batchelor length-scale is given by
ηθ = ηK/P

3/4
r ≈ 5.62 ηK at Pr = 0.1, ηθ ≈ ηK

at Pr = 1, and ηθ = ηK/P
1/2
r ≈ 0.316 ηK

at Pr = 10. The simulations are performed us-
ing the numerical code (Chaouat, 2011) which is
based on the finite volume technique with MPI.

4 Numerical results
The transformed variable Θ+ = θ+

w − θ+ is
considered to analyze the results. Comparions
are made with DNS (Chaouat and Peyret, 2019).
Figure 2 shows the contours plots of the instanta-
neous scalar field for the Prandtl number Pr = 1
in the mid-plane of the channel illustrating the de-
tachment of vortex in the normal direction. Fig. 3
shows the mean scalar variable Θ+ versus the log-
arithmic wall distance. It is found that the PITM
velocity profile present an excellent agreement with
the DNS data at each Prandtl number although the
grid is coarse. Fig. 4 displays the rms scalar vari-
ance θrms and indicates a good agreement with
the reference data. The distribution of the sub-
grid scale fluctuations relatively to the resolved
scale fluctuations is governed by the wave num-
bers appearing in the spectrum partition Eθ with
influence of Prandtl number.

5 Conclusion
As a result of physical modeling in the spectral

Figure 2: Contours of the instantaneous passive scalar
in the (x1, x3) mid-plane illustrating the un-
steady character of the scalar field. Pr = 1.

space of wave numbers, the subfilter PITM model
has been extended for accounting of heat trans-
fer in hybrid RANS/LES simulations. Numeri-
cal simulations of the turbulent channel flow with
scalar fields have been then performed on coarse
grids at Rτ = 395 for Pr = 0.1, 1 and 10. The
distributions of the mean scalar variable 〈θ〉 and
rms scalar fluctuations θrms = 〈θ′θ′〉 were fairly
well predicted.
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Figure 3: Mean scalar field 〈θ+〉 in logarithmic co-
ordinate versus the wall unit distance for
several Pr numbers. DNS : •; PITM :
N. (a) Pr = 0.1; (b) Pr = 1; (c) Pr = 10;
Rτ = 395.
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Figure 4: Root mean square of the scalar variance
θ+rms =

√
〈θ′+θ′+〉 versus the wall dis-

tance for several Pr numbers. DNS : •;
PITM : � . Subgrid scale : H; Resolved

scale : N. (a) Pr = 0.1; (b) Pr = 1; (c)
Pr = 10; Rτ = 395.


