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A new subgrid-scale turbulence model involving all the transport equations of the subgrid-scale
stresses and including a dissipation rate equation is proposed for large-eddy simulation �LES� of
unsteady flows which present nonequilibrium turbulence spectra. Such a situation in flow physics
occurs when unsteadiness is created by forced boundary conditions, but also in more complex
situations, when natural unsteadiness develops due to the existence of organized eddies. This latter
phenomenon explains the instability found in a porous-walled chamber with mass injection. Due to
the high value of Reynolds number, the presence of wall boundaries, and the use of relatively coarse
grids, the spectral cutoff may be located before the inertial zone of the energy spectrum. The use of
transport equations for all the subgrid-scale stress components allows us to take into account more
precisely the turbulent processes of production, transfer, pressure redistribution effects, and
dissipation, and the concept of turbulent viscosity is no longer necessary. Moreover, some
backscatter effects can possibly arise. As a result of modeling in the spectral space, a formally
continuous derivation of the model is obtained when the cutoff location is varied, which guaranties
compatibility with the two extreme limits that are the full statistical Reynolds stress transport model
of Launder and Shima and direct numerical simulation. In the present approach, due to the presence
of the subgrid-scale pressure-strain correlation term in the stress equations, the new subgrid model
is able to account for history and nonlocal effects of the turbulence interactions, and also to describe
more accurately the anisotropy of the turbulence field. The present model is first calibrated on the
well-known fully turbulent channel flow. For this test case, the LES simulation reveals that the
computed velocities and Reynolds stresses agree very well with the DNS data. The application to
the channel flow with wall mass injection which undergoes a transition process from laminar to
turbulent regime and the development of natural unsteadiness is then considered for illustrating the
potentials of the method. LES results are compared with experimental data including the velocity
components, the turbulent stresses, and the transition location. A satisfactory agreement is obtained
for both the mean quantities and the turbulent field. In addition, structural information of the flow
is provided. © 2005 American Institute of Physics. �DOI: 10.1063/1.1928607�

I. INTRODUCTION

Advanced statistical models based on the Reynolds av-
eraged Navier–Stokes equations �RANS� such as the Rey-
nolds stress model �RSM�, described in detail by Speziale et
al.,1 can be able to accurately predict complex flows for en-
gineering applications, as, for instance, flows with strong ef-
fects of streamline curvature, system rotation, or wall injec-
tion, as shown by Chaouat.2,3 However, these models based
on one-point closure are not well suited for unsteady flows
subjected to medium range frequencies that can interact with
the turbulence scales. Futhermore, they cannot provide infor-
mation on turbulence structures, two-point correlation statis-
tics, or energy spectrum which can be useful for investigat-
ing the flow characteristics. Due to the progress in powerful
computers, large-eddy simulation �LES� is a promising route
toward the calculation of turbulent flows which has been
now largely developed. This approach consists in modeling
the more universal small scales, while the large-scale mo-

tions are explicitly calculated. It assumes that the filter cutoff
occurs at a wave number which is located in the inertial
range for equilibrium flows. LES thus appears to be a good
compromise between direct numerical simulation �DNS�
which resolves all the turbulent scales and RANS statistical
modeling in which the whole flow structures are modeled.
Contrary to full statistical modeling, LES enables us to
mimic the mechanisms of turbulent interactions, and infor-
mation on velocity or pressure fluctuations and on two-point
correlations are possible. In the past, the most widely used
subgrid-scale model was a viscosity type model proposed by
Smagorinsky.4 It is based on an implicit equilibrium hypoth-
esis which assumes that the viscosity can be calculated using
the resolved scales as a characteristic velocity and the grid
size as a characteristic length. It was first applied to channel
flows by Deardorff5 and more recently by Moin and Kim.6

Many flow studies can be found in the scientific literature
that have used this model. However, it soon appeared that the
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Smagorinsky constant is not universal and must be varied
from one flow to another. As mentioned by Lesieur,7 new
trends in LES of turbulence have been proposed in the past
decade, such as, for instance, the dynamic model developed
by Germano et al.8 or the structure model of Métais and
Lesieur.9 Transport equations of the subgrid-scale turbulent
kinetic energy with an algebraic relation for the length scale
given by the mesh cell size have been proposed by
Schumann,10 Horiuti and Yoshizawa,11 and more recently by
Dejoan and Schiestel.12 Deardorff,13 was the first author to
propose stress transport equations for subgrid-scale turbu-
lence.

Despite improvements in the more advanced approaches,
several modeling problems remain. For instance, the filter
width may no longer be a good estimate of the characteristic
subgrid-scale turbulence length when the filter cutoff is lo-
cated at a wave number below the inertial range in nonequi-
librium flows. To overcome this problem, Dejoan and
Schiestel14 have developed a new LES model based on two
transport equations for the subgrid-scale energy and the dis-
sipation rate � equation. In this approach, the transport equa-
tion for the dissipation rate is used for calculating the length
scale without referring directly to the mesh size. Applications
of partially integrated transport modeling �PITM� to un-
steady turbulence submitted to periodic forcing in pulsed
channel flow have illustrated the potentials of this method.15

The aim of the present study is to propose a new LES
approach involving all the stress transport equations of the
subgrid-scale turbulence including also the dissipation rate
equation. The approach is based on the work of Dejoan and
Schiestel14 which is extended to subgrid-scale Reynolds
stresses components. This modeling strategy is motivated by
the idea that the recognized advantages of usual second-order
closures �RSM� are worth to be transposed to subgrid-scale
�SGS� modeling when the SGS part is not small compared to
the resolved part. In particular, due to the presence of the
subgrid-scale pressure-strain correlation term in the transport
equations, this new model embodies interesting features al-
lowing a more realistic description of the flow anisotropy
than eddy viscosity models, and also a better account of his-
tory and nonlocal effects.

In that type of LES approach, it is of importance to note
that the model behavior must be dependent on the location of
the cutoff imposed by the filter width. The model formula-
tion will be built such that the new subgrid-scale model can
vary continuously between the two extreme limits that are
the direct numerical simulation �without any modeling� and
the full statistical Reynolds stress model of Launder and
Shima.16

This PITM approach seems particularly relevant for
studying turbulent flows with nonstandard spectral distribu-
tions �with some departure from the standard Kolmogorov
spectrum� and also relatively coarse grids. So, this approach
enables us to bridge URANS and LES methods. Recently,
this line of thought appeared to gain major interest in turbu-
lence modeling not only from the fundamental and theoreti-
cal points of view but also for practical reasons as men-
tioned, for instance, by Germano17 and Spalart.18 The main
applications will be concerned with simulations of turbulent

flows which undergo nonequilibrium changes such as pro-
duced by unsteadiness �forced or natural� in the mean or
strong spatial variations on relatively coarse grids. In order
to calibrate the present model, LES of fully turbulent channel
flow is performed and the velocity and the Reynolds stresses
components are compared with available DNS data of Moser
et al.19 The application to the channel flow with wall injec-
tion is then considered for illustrating the potentials of the
method. This case is of central interest for engineering appli-
cations in solid rocket motors �SRM�. The mass transfer re-
sulting from the propellant combustion produces an internal
flowfield with different flow regimes, from laminar to turbu-
lent, which affects the ballistics predictions of the rocket, as
observed by Chaouat and Schiestel.20 In that framework of
SRM applications, it is of interest to note that Wasistho and
Moser21 have proposed recently a turbulence strategy based
on a zonal modeling approach such as an interface between
detached eddy simulation �DES� near the wall and LES away
from the wall. In the present study, we show that the subgrid-
scale model is able to reproduce a good description of the
injection induced flow and the underlying acting mecha-
nisms. Comparisons with existing experimental data are
made for the velocity, the stresses, and the turbulent transi-
tion process.

II. GOVERNING EQUATIONS

We consider the turbulent flow of a viscous fluid. As in
the usual treatment of turbulence, the flow variable � is de-
composed into a filtered part including mean value and large-

scale fluctuation �̄ and a subgrid-scale fluctuating part ��
such as

� = �̄ + ��, �1�

the quantity �̄ is defined by the filter function G� as

�̄ =� �
i=1

3

G�i
�xi,xi����x1�,x2�,x3��dx1�dx2�dx3�, �2�

where �i is the filter width in the ith direction. The Reynolds
statistical average of � is denoted by ��� so that the large

scale fluctuation is �̄− ���. In the present case, the Favre
averaging22 is used for compressible flows. In that definition,
the variable � can be written as

� = �̃ + �� �3�

leading to �̃=�� / �̄. The filtered equations of the mass, the
momentum, and the energy are

��̄

�t
+

�

�xj
��̄ũj� = 0, �4�

�

�t
��̄ũi� +

�

�xj
��̄ũiũj

˜� =
�

�xj
��̄ij − �̄ui�uj�

˜ � , �5�
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�

�t
��̄Ẽ� +

�

�xj
��̄Ẽũj

˜� =
�

�xj
��̄ijũi� −

�q̄j

�xj

+
�

�xj
��ijui� − �̄E�u�j

˜ � , �6�

where ui, E, �ij, qi are, respectively, the velocity vector, the
total energy, the tensorial term composed by the pressure and
the viscous tensor, and the total heat flux vector. In these
expressions, the �̄ij tensor takes the form

�̄ij = �̄	 �ūi

�xj
+

�ūj

�xi

 − 	p̄�ij +

2

3
�̄

�ūk

�xk
�ij
 , �7�

where � stands for the molecular viscosity. The subgrid-
scale Reynolds stress tensor for the fluctuating velocities is

��ij�SGS = ui�uj�
˜ . �8�

The filtered heat flux is computed using Fourier law,

q̄i = − 	̄
�T̄

�xi
, �9�

where T is the temperature and 	 stands for the thermal
conductivity. Assuming ideal gas law, p=�RT /M, where R
is the universal gas constant and M is the molecular weight;
the filtered thermodynamic pressure is computed as

p̄ = �
 − 1��̄	Ẽ −
1

2
ũiũi
˜ −

1

2
ui�ui�
˜ 
 . �10�

The presence of a turbulent contribution ui�ui�
˜ in Eq. �10�

shows the usual coupling between the filtered equations and
the turbulent transport equations. The fluctuating correlation
which appears in the right-hand side in the energy equation
�6� can be developed as

�ijui� − �̄E�uj�
˜ � �̄ũiui�uj�

˜ + �̄h�uj�
˜ , �11�

where h is the enthalpy of the fluid, so that the closure of the
mean flow equations is necessary for the subgrid-scale tur-

bulent stress �̄ui�uj�
˜ as well as for the turbulent heat flux h�ui�

˜ .

III. SUBGRID-SCALE TURBULENCE MODEL USING
TRANSPORT EQUATIONS

A. Modeling concept of the new approach

The exact filtered transport equation of the subgrid-scale
stress tensor ui�uj� takes the following form in incompressible
fluid flow using Eq. �1� decomposition:23

�

�t
��ui�uj�� +

�

�xk
��ui�uj�ūk� = Pij − ��ij + �ij + Jij , �12�

with

Pij = − �ui�uk�
�ūj

�xk
− �uj�uk�

�ūi

�xk
,

�ij = 2�
�ui�

�xk

�uj�

�xk
,

�ij = p�	 �ui�

�xj
+

�uj�

�xi

 ,

Jij = − �
�

�xk
ui�uj�uk� + �uj�

�

�xk
ui�uk� + �ui�

�

�xk
uj�uk� −

�

�xi
p�uj�

−
�

�xj
p�ui� + �

�2ui�uj�

�xk�xk
. �13�

The terms on the right-hand side of Eq. �13� are identified as
the production by the filtered velocity Pij, the turbulent vis-
cous dissipation �ij, the redistribution of the subgrid-scale
turbulent kinetic energy among the stress components �ij,
and the diffusion caused by the fluctuating velocities Jij to-
gether with the molecular diffusion.

The modeling of the filtered transport equation of the
subgrid-scale stress tensor lies on the analysis of the turbu-
lent processes in the spectral space. In this framework, a
cutoff wave number c is introduced in the medium range of
eddies while the wave number d is located at the end of the
inertial range of the spectrum after the transfer zone. The
subgrid-scale energy in the range �c ,d� is denoted as
kSGS= ��mm�SGS/2. We introduce the dimensionless wave
number �c=ck

3/2 /� using the cutoff wave number c and a
macroturbulent length scale computed by means of k and �,
where k denotes the total turbulent kinetic energy �resolved
part and modeled part�.14

From Eq. �12�, the turbulent transport equation of the

subgrid-scale tensor ��ij�SGS=ui�uj�
˜ for compressible flows

can be modeled as

�

�t
��̄��ij�SGS� +

�

�xk
��̄��ij�SGSũk�

= Pij − �̄�ij + �ij
1 + �ij

2 + �ij
w + Jij , �14�

where

Pij = − �̄��ik�SGS
�ũj

�xk
− �̄�� jk�SGS

�ũi

�xk
, �15�

�ij = 2
3��ij . �16�

Although the density is variable, the fluctuating density
is neglected in the present applications. The redistribution
terms �ij

1 , �ij
2 , and �ij

w of the pressure-strain subgrid-scale
fluctuating correlations must be modeled. In the limit of van-
ishing �c, the spectral cutoff goes to zero and the assump-
tions are chosen in order to recover the usual statistical
model of Launder and Shima.16 In accordance with that con-
dition, we propose the following model hypotheses in the
range �c ,d�:

�ij
1 = − cSGS1

�̄
�

kSGS
���ij�SGS −

2

3
kSGS�ij , �17�

�ij
2 = − c2�Pij − 1

3 Pmm�ij� . �18�

Equation �17� characterizes nonlinear interactions. Equation
�18� represents the linear contribution of the return to iso-
tropy with respect to the velocity gradients. According to the
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classical physics of turbulence, the coefficient cSGS1
must

increase with the parameter �c in order to increase the return
to isotropy in the range of larger wave numbers. To do that,
we suggest a simple empirical function

cSGS1
=

1 + ���c
2

1 + �c
2 c1, �19�

where �� is a numerical constant. This function satisfies the
limiting condition

lim
�c→0

cSGS1
��c� = c1. �20�

In this formulation, like in the Launder and Shima model, the
function c1 depends on the second and third subgrid-
scale invariants A2=aijaji, A3=aijajkaki, and the flatness
coefficient parameter A=1− 9

8 �A2−A3�, where aij =���ij�SGS

− 2
3kSGS�ij� /kSGS. The term �ij

w takes into account the wall
reflection effect of the pressure fluctuations and is embedded
in the model for reproducing correctly the logarithmic region
of the turbulent boundary layer. It is modeled according to
the previous work of Gibson:24

�ij
w = c1

w �̄�

kSGS
���kl�SGSnknl�ij −

3

2
��ki�SGSnknj

−
3

2
��kj�SGSnkni fw

+ c2
w	�kl

2 nknl�ij −
3

2
�ik

2 nknj −
3

2
� jk

2 nkni
 fw, �21�

where ni is the unit vector perpendicular to the wall surface
and fw is a near wall damping funtion. The diffusion process
Jij is modeled assuming a gradient law

Jij =
�

�xk
	�̄

���ij�SGS

�xk
+ cs�̄

kSGS

�
��kl�SGS

���ij�SGS

�xl

 , �22�

where cs is a numerical coefficient which takes the value
0.22. The functions used in that subgrid model are listed in
Table I. Note that the transport equation of the subgrid-scale
turbulent energy can be easily obtained from Eq. �14� by
contracting the tensor ��ij�SGS over its indices:

�

�t
��̄kSGS� +

�

�xm
��̄kSGSũm� =

1

2
Pmm − �̄� +

1

2
Jmm. �23�

In contrast to the two-equation model, it can be mentioned
that the production term Pij is allowed to become negative.
In such a case, this implies that energy is transferred from the
filtered motions up to the resolved motions, known as back-
scatter process.

The dissipation rate � which appears in Eq. �16� is com-
puted by means of a transport equation. As for the transport
equation of the subgrid-scale velocity fluctuations, this equa-
tion is modeled by considering the turbulent processes which
develop in the spectral space, or more precisely, in a spectral
slice. This method has been applied in multiple-time-scale
modeling of turbulent flows in one-point closures.25 In a first
step, the case of homogeneous anisotropic turbulence is con-
sidered. The constant value of the mean velocity gradient is
denoted �ij. The equation of the energy spectrum balance
E�� is obtained by taking the Fourier transform and mean
value on spherical shells of the transport equation of the
two-point velocity correlation:26,27

�E

�t
= − �ijAij + T − 2�2E . �24�

The three terms on the right-hand side of this equation rep-
resent the production caused by the mean velocity gradient,
the spectral transfer which results from triad interactions of
wave number modes, and the viscous dissipation.28 The term
Aij corresponds to the spherical mean of the spectral tensor
of the double velocity correlations in wave vector space. In-
tegration of the basic equation �24� over the wave number
range � j−1 , j� yields the following equation:

�k�j−1,j�

�t
= P�j−1,j�

− F� j� + F� j−1� − ��j−1,j�
, �25�

with the relations

k�j−1,j�
= �

j−1

j

E��d , �26�

P�j−1,j�
= − �lm�

j−1

j

Alm��d , �27�

F� j� = F� j� − E� j�
� j

�t
, �28�

F�� = �


�

T���d� = − �
0



T���d�, �29�

��j−1,j�
= 2��

j−1

j

2E��d . �30�

Here F represents the spectral energy rate transferred into
the wave number range � , +�� by vortex stretching from
the wave number range �0,�. Equation �25� can be applied
for any wave number range such as �0,c�, �c ,d�, and
�d ,��. Taking into account the significant processes, one
can obtain the following approximated equations:

��k − kSGS�
�t

= P�0,c� − F�c� , �31�

��kSGS�
�t

= P�c,d� − F�d� + F�c� , �32�

TABLE I. Functions used in the subgrid-scale model.

c1 1+2.58AA2
1/4(1−exp�−��1/150�Rt�2�)

c2 3 � 4A1/2

c1
w −2 � 3c1+ 5 � 3

c2
w

max�2 � 3c2− 1 � 6 ,0� /c2

fw 0.4kSGS
3/2 /�xn
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0 = F�d� − ��d,��, �33�

where ��d,����. Equation �33� indicates that the dissipation
rate � can indeed be interpreted as a spectral flux. Equation
�32� is compared to Eq. �A6� which is developed in physical
space �cf. the Appendix� and yields the exact expressions for
the production, transfer, and dissipation rates

P�c,d� = − �ui�uj��
��ui�
�xj

, �34�

F�c� = − �ui�uj�
�vi

�xj
� , �35�

� = �� �ui�

�xj

�ui�

�xj
� . �36�

In Eq. �35�, vi= ūi− �ui� denotes the large-scale fluctuating
velocity component which is the difference between the fil-
tered and the statistical mean velocity. Note that a term by
term summation of Eqs. �31�–�33� provides the transport
equation of the total turbulent kinetic energy k,

�k

�t
= P�0,d� − � , �37�

where P�0,d�� P�0,��. In the present approach, the splitting
wave number d is assumed to be related to the cutoff wave
number c by the dimensional relation

d − c = �SGS
�

kSGS
3/2 , �38�

where �SGS is a coefficient which may be dependent on the
spectrum shape and on the Reynolds number. The relation
�38� is proposed for adjusting the location of the cutoff wave
number to the evolving spectrum. The dissipation rate equa-
tion is then obtained by taking the derivative of Eq. �38� with
respect to time using Eq. �28� written for the wave number
d:

� j

�t
=

F� j� − F� j�
E� j�

. �39�

Taking into account �32� and �33�, one can easily obtain

��

�t
= cSGS�1

�

kSGS
�P�c,d� + F�c�� − cSGS�2

�2

kSGS
, �40�

where cSGS�1
=3/2 and

cSGS�2
=

3

2
−

kSGS

�d − c�E�d�
�	F�d�

�
− 1


−
E�d�
E�c�

	F�c�
�

− 1
 . �41�

Setting d�c and E�d��E�c�, Eq. �41� reduces to

cSGS�2
=

3

2
−

kSGS

dE�d�
	F�d�

�
− 1
 . �42�

In the case of full statistical modeling where c=0, Eq. �38�
is reduced to the equation

d = �d
�

k3/2 , �43�

where the coefficient �d is a numerical constant chosen such
that d is located after the inertial range. By taking the de-
rivative of Eq. �43� with respect to time, using Eqs. �39� and
�37�, another formulation of the dissipation rate equation is
then obtained,

��

�t
= c�1

�

k
P�0,�� − c�2

�2

k
, �44�

where c�1
=3/2 and

c�2
=

3

2
−

k

dE�d�
	F�d�

�
− 1
 . �45�

This is in fact the usual � equation used in statistical clo-
sures. Equations �42� and �45� show that the coefficients
cSGS�2

and c�2
are the functions of the spectrum shape. Keep-

ing in mind that the dissipation rate � must remain the same
regardless of the location of the wave number c, comparing
Eq. �40� with Eq. �44� allows us to express the coefficient
cSGS�2

in a more convenient form

cSGS�2
= c�1

+
kSGS

k
�c�2

− c�1
� . �46�

The function kSGS/k which appears in Eq. �46� can be cali-
brated by referring to the Kolmogorov law of the three-
dimensional energy spectrum in the inertial wave number
range in nearly equilibrium flows

E�� = CK�2/3−5/3, �47�

where CK�1.50 is the Kolmogorov constant. The subgrid-
scale turbulent kinetic energy is then estimated by integrating
the Kolmogorov law in the wave number range �c , +��:

kSGS = �
c

�

E��d =
3

2
CK�2/3c

−2/3. �48�

Taking into account the expression of the dimensionless
wave number �c=ck

3/2 /� and Eq. �48�, the ratio kSGS/k is
easily obtained:

kSGS

k
=

3CK

2
�c

−2/3. �49�

As a result of interest, Eq. �49� shows that the function
kSGS/k is dependent on the parameter �c

−2/3. The previous
result is only valid in the inertial range. It is extended em-
pirically to the general case, taking care to satisfy the limit
when kSGS approaches k �i.e., when �c goes to zero�. So, the
coefficient cSGS�2

in Eq. �46� is modeled taking account of
Eq. �49�. The empirical choice is proposed as

cSGS�2
= c�1

+
c�2

− c�1

1 + ���c
2/3 , �50�

where �� is a numerical constant which takes the theoretical
value ��=2/3CK�0.444 in order to satisfy the correct
asymptotic behavior in �c

−2/3 for high values �c with the lim-
iting conditions:
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lim
�c→0

cSGS�2
��c� = c�2

,

lim
�c→�

cSGS�2
��c� = c�1

.

In the limit of full statistical modeling, kSGS→k and the
usual RSM model is recovered while in the limit kSGS→0,
the subgrid-scale energy is not maintained due to the fact that
cSGS�2

→c�1
and the model behaves like a DNS �but the

model becomes useless!�. For nonhomogeneous flows, the
convection and diffusion terms are embedded in Eq. �40�.
Then, also taking into account low Reynolds number terms,
the modeled equation of the dissipation rate can be written as
follows:

�

�t
��̄�� +

�

�xj
��̄�ũj� = c�1

�

kSGS

Pmm

2
− cSGS�2

�̄
�̃�

kSGS
+ J�,

�51�

where

J� =
�

�xj
	�̄

��

�xj
+ c��̄

kSGS

�
�� jm�SGS

��

�xm

 �52�

and

�̃ = � − 2�	 ��kSGS

�xn

2

. �53�

The values of the numerical coefficients in Eq. �51� are the
following: c�1

=1.45, c�2
=1.9, and c�=0.18. Note that empiri-

cal terms incorporated in the original model of Launder and
Shima16 regarding the coefficient c�1

have been suppressed in
order not to alter the rationale of the model. Intuitively, it is
obvious that the usual � equation used in statistical modeling
in which the whole spectrum is modeled cannot be used
without modification in LES in which just a part of the spec-
trum is modeled. This modification is made here through a
variation of the coefficient cSGS�2

. This is the main feature of
the present LES model which is basically different from an
URANS approach. To achieve the complete closure of the
equations, the turbulent heat flux is computed as follows:

h�u�i = −
c�kSGS

2

�

cp

PrSGS

�T̄

�xi
, �54�

where cp and PrSGS
are the specific heat at constant pressure

and the subgrid-scale turbulent Prandtl number, respectively,
and c� is a constant coefficient setting to 0.09.

B. Practical formulation

In a practical formulation for the case of wall bounded
flows, the length scale can be computed using the normal
distance to the wall L=Kx3, where K is the Von Kármán
constant. In that condition, we use the alternative dimension-
less wave number Nc=cL instead of the previous wave
number �c=ck

3/2 /� and we introduce modified coefficients
�N and �N in Eqs. �19� and �50�. This simplified approach
avoids the calculation of the total turbulence energy involved
in the expression of �c at every time step during the simula-

tion. In that framework, the alternative functions of the
subgrid-scale turbulence model are written in the following
way:

cSGS1
=

1 + �NNc
2

1 + Nc
2 c1 �55�

and

cSGS�2
= c�1

+
c�2

− c�1

1 + �NNc
2/3 . �56�

The order of magnitude of the new coefficient �N is then
obtained by reference to the logarithmic layer. Considering
that k�aku�

2 where ak�3.3 and that ��u�
3 /Kx3 where u� is

the friction velocity, one can easily obtain the relation �c

=ak
3/2Nc which leads to the theoretical value �N=2ak /3CK

�1.466. The cutoff wave number c is approximated by the
filter width:

c =
�

��1�2�3�1/3 . �57�

The large-scale part of the Reynolds stress is given by

��ij�LES = �ūiūj� − �ūi��ūj� , �58�

so that the total Reynolds stress �is is calculated as the sum
of the subgrid and large-scale parts:

�ij = ��ij�SGS + ��ij�LES. �59�

C. Realizability conditions for the model

The subgrid-scale stress tensor ��ij�SGS computed by the
modeled transport equation �14� must satisfy the realizability
conditions which imply non-negative values of the three
principal invariants Ii that appear in the characteristic poly-
nomial P���=�3− I1�2+ I2�− I3 of the matrix formed by the
components ��ij�SGS:29

I1 = ��ii�SGS � 0, �60�

I2 = 1
2 ���ii�SGS�� j j�SGS − ��ij�SGS�� ji�SGS� � 0, �61�

I3 = 1
6 ���ii�SGS�� j j�SGS��kk�SGS − 3��kk�SGS��ij�SGS�� ji�SGS

+ 2��ij�SGS�� jk�SGS��ki�SGS� � 0. �62�

It is easier to examine the question of realizability in a coor-
dinate system aligned with the principal axes of the subgrid-
scale stress tensor. For practical reasons, it is also more con-
venient to analyze the weak form of realizability29 which
requires that when a principal subgrid-scale stress compo-
nent vanishes, its time derivative must be positive. This en-
sures that negative energy component cannot occur when this
constraint is satisfied. Although the basis of the principal
axes of the subgrid-scale stress tensor is rotating in time,
Speziale et al.30 have shown that the first derivative con-
straint takes the same formulation in the principal axes. So
that the modeled transport equation �14� of the turbulent
stress component �����SGS can be written as
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�

�t
��̄�����SGS� +

�

�x�

��̄�����SGSũ��

= P�� −
2

3
�̄� − cSGS1

�̄
�

kSGS
������SGS −

2

3
kSGS

− c2	P�� −
1

3
P��
 , �63�

where the Einstein summation convention is suspended for
indices ��. The diffusion term as well as the reflection term
are not considered. When the stress component �����SGS van-
ishes, it can be shown that the production term P�� is zero so
that the weak realizability condition implies

cSGS1
� 1 − c2

P��

2�̄�
. �64�

Due to the expressions of the coefficients cSGS1
in Eq. �19�

and c2 in Table I, Eq. �64� is verified when the production
term P�� of the turbulent kinetic energy is positive. This
corresponds to the usual case of flow physics and ensures,
therefore, that the weak realizability constraint is satisfied, as
it was previously demonstrated for the statistical RSM
model.2

IV. NUMERICAL METHOD

The finite volume technique is adopted in the present
code for solving the full transport equations of the mass den-
sity, the momentum, the total energy, the subgrid-scale
stresses, and the dissipation rate. The fluxes are evaluated at
the cell interfaces, whereas the unknown variables are calcu-
lated at the center of each cell. The vector of the aerody-
namic variables

U = ��̄, �̄ũ1, �̄ũ2, �̄ũ3, �̄Ẽ�t �65�

is solved using a centered numerical scheme of second- or
fourth-order accuracy in space discretization. The vector
TSGS of the turbulent subgrid-scale variables

TSGS = ���11�SGS,��12�SGS,��13�SGS,��22�SGS,

��23�SGS,��33�SGS,���t �66�

is solved by a noncentered numerical scheme of second-
order accuracy in space discretization. The governing equa-
tions are integrated explicitly in time using a three-step
Runge–Kutta scheme which is well appropriate for simulat-
ing unsteady flows. The source terms are linearized to avoid
numerical instabilities. The numerical solver has been previ-
ously tested on channel flows.31 In the present study, the top
hat filter has been considered.

V. LES OF FULLY DEVELOPED TURBULENT
CHANNEL FLOW

This flow is chosen as a preliminary test case for the
proposed approach. The sizes of the channel in the stream-
wise, spanwise, and normal directions along the axes x1, x2,
x3, respectively, are given in Table II. In this table, Ni is the
number of grid points, Li is the length of the computational
box, �i �i=1,2� is the uniform spacing, and �ic �i=3� is the
maximum spacing in the center of the channel.

Numerical simulations are performed on coarse and re-
fined meshes requiring 16�32�64=32 768 grids and 32
�64�84=172 032 grids with different spacings �i. This
choice is motivated by the necessity of checking the grid
independence of the solution on the numerical point of view
as well as the consistency of the subgrid scale model when
the filter width is changed. In the normal direction to the
wall, the grid points are distributed in nonuniform spacing
with refinement near the wall according to the transformation

x3j = 1
2 tanh�� j artanh a� , �67�

where

� j = − 1 + 2�j − 1�/�N3 − 1� �j = 1,2, ¯ ,N3� . �68�

Here a=0,98 346 and N3=64 or 84. The mesh is uniform in
the two remaining directions. More precisely, the first point
of the mesh in the direction normal to the wall is located at
the dimensionless distance �3

+=�3u� /�=0.5, whereas the
uniform dimensionless spacings in the other directions are
for case 1, �1

+=105.3, �2
+=50.9 and for case 2, �1

+=50.9,
�2

+=25.1 as indicated in Table II. The numerical simulation
of fully developed turbulent channel flow is compared with
the data obtained by direct numerical simulation19 for a Rey-
nolds number R�=��u�� /2�=395, based on the averaged
friction density ��, the averaged friction velocity u�, and the
channel half-width � /2. Periodic boundary conditions are ap-
plied in the streamwise and spanwise directions whereas a
no-slip velocity condition is imposed at the walls. The peri-
odic boundary condition in the streamwise direction required
the introduction of a constant pressure gradient term G
=2��u�

2 /� in both the momentum and energy equations for
balancing the friction at the walls. The flow conditions se-
lected for the simulations are nominally atmospheric air. The
wall temperature Tw is taken as 300 K. Zero turbulent sub-
grid kinetic energy and the dissipation rate value �w

=2����kSGS/�x3�2 are specified at the walls. The initial flow-
field is composed of an isotropic turbulence field32 super-
posed to an anisotropic set of eddies. The effect of the eddies
is to increase the turbulent production term resulting from
the shear stress. The anisotropic set of eddies is chosen such

TABLE II. Simulation parameters for the fully developed turbulent channel flow.

Case N1 N2 N3 L1 /� L2 /� �1 /� �2 /� �3c /� �1
+ �2

+ �3c
+

DNSa 256 192 193 � � /2 0.012 0.008 0.008 10.0 6.5 6.5

Present LES 1 16 32 64 2 2 0.133 0.065 0.038 105.3 50.9 30.0

Present LES 2 32 64 84 2 2 0.065 0.032 0.029 50.9 25.1 23.0

aRef. 19.
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that the ensuing mean shear stress reach a level comparable
to the one prevailing in usual channel flow. As a consequence
the development of the turbulent field is enhanced and the
statistical convergence of the LES simulation is speeded up.
Although this practice is not necessary to develop a numeri-
cal simulation, it does help the convergence.

Several trial and error tests have been made for selecting
appropriate values for the two model coefficients �N and �N.
These tests have led to the optimized coefficient values �N
=1.5 and �N=0.5. Figure 1 describes the evolution of the
cutoff wave number c=� /�, where �= ��1�2�3�1/3 versus
the normal distance to the wall x3 which depend on the mesh
distribution for the two grids. Figure 2 shows the evolution
of the dimensionless cutoff wave number Nc versus the dis-
tance normal to the wall. This function is increasing with the
distance from the wall to the center of the channel. Figure 3
describes the variations of the function cSGS1

/c1 versus the
normal distance x3. As a consequence of Eq. �19�, this func-
tion is increasing with the wall distance in order to
strengthen the return to isotropy at greater wave numbers.

Figure 4 shows the evolution of the coefficient cSGS�2
versus

the wall distance x3. For the coarse and refined meshes,
cSGS�2

varies in the ranges �1.60, 1.9� and �1.55, 1.9�, respec-
tively. These values stay nicely in scale between the two
limiting values c�1

=1.45 and c�2
=1.9 according to Eq. �50�.

The function cSGS�2
goes to the limit c�2

near the walls be-
cause the parameter Nc tends to zero in that region, and is
decreased when moving to the centerline of the channel. This
result means that the subgrid-scale model varies continu-
ously from quasi-URANS to a LES model and behaves more
or less like the RSM model very close to the wall, although
the mesh is very refined ��3

+=0.5�.
Figure 5 shows the profiles of the mean velocity �statis-

tical average� �u1� /u� in logarithmic coordinate x3
+=x3u� /�

for the coarse and refined meshes. One can observe that the
velocities agree very well with the DNS data. Figure 6 de-
scribes the distributions of the streamwise, spanwise, and
normal normalized subgrid stresses, ���ii�SGS�1/2 /u� for the
coarse and refined meshes. In the same way, Fig. 7 presents
the evolutions of the streamwise, spanwise, and normal

FIG. 1. Dimensionless cutoff wave number c�=�� /�; �, LES1; �, LES2.
R�=395.

FIG. 2. Dimensionless parameter Nc=cL; �, LES1; �, LES2. R�=395.

FIG. 3. Normalized function cSGS1 /c1; �, LES1; �, LES2. R�=395.

FIG. 4. Subgrid-scale coefficient cSGS�2
; cSGS�2

; �, LES1; �, LES2.
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large-scale stresses ���ii�LES�1/2 /u�. The curves present regu-
lar shapes characterized by the peaks of turbulence intensity
close to the walls. A good degree of symmetry for the large-
scale stresses is reached at the statistical convergence. As
results of interest, Fig. 6 indicates that the subgrid-scale
stresses are indeed anisotropic in the vicinity of the walls.
This remark demonstrates the usefulness of the present LES
model based on the transport equations for the subgrid-scale
stresses. As expected, the proportion of the turbulence dis-
tributed in the subgrid part and large-scale part is governed
by the mesh size. For the coarse mesh, the subgrid part pre-
sents higher intensity than those observed for the refined
mesh, whereas the large-scale part shows lower intensity
than those reached for the refined mesh. The sharing out of
turbulence energy among the subgrid and resolved turbu-
lence scales �see Fig. 7� for the coarse and refined mesh
evolves according to the analytical behavior of the model
which is governed by Eq. �50�. In the center of the channel,
the part of energy in the resolved scales is larger than the part
of energy in the subgrid scales. Figure 8 shows the evolu-
tions of the normalized total Reynolds stresses computed as
the sum of the subgrid- and large-scale parts ����ii�SGS�

+ ���ii�LES��1/2 /u� �i=1,2 ,3� for the two different meshes
with comparisons with the DNS data. For the LES simula-
tion performed on the coarse mesh, a fair agreement with the
DNS data is observed but the turbulent stresses appear
slightly overpredicted in the channel although the intensity
of the turbulent peak close to the walls is well reproduced.
This remaining discrepancy with the DNS data results prob-
ably from the numerical scheme diffusion effects which are
generated by the mesh discretization errors for such a very
coarse grid. For the refined mesh which provides better nu-
merical resolution, a very good agreement is obtained with
the DNS data. These figures also show the good behavior of
the model when the filter width is changed. Figure 9 is re-
lated to the distributions of the normalized shear stress, re-
spectively, for the subgrid- and large-scale parts,
���13�SGS� /u� and ���13�LES� /u�, for the coarse and refined
meshes. Both the subgrid- and large-scale turbulent shear
stresses, are perfectly antisymmetric through the channel
cross section without any spurious oscillation. For the refined
mesh, the SGS part is smaller than the LES part while the
reverse situation occurs for the coarse mesh. As for the nor-
mal stresses, the SGS part of the shear stress is larger for the

FIG. 5. Mean velocity profile. �u1� /u� in logarithmic coordinate; �, �a� LES
1, �b� LES 2; —, DNS. R�=395.

FIG. 6. Turbulent subgrid-scale stresses ���ii�SGS
1/2 � /u�. �a� LES 1; �b� LES 2;

�, i=1; �, i=2; �, i=3. R�=395.
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coarse mesh than the one observed for the refined mesh.
Figure 10 shows the evolution of the total shear stress
����13�SGS�+ ���13�LES�� /u� for the coarse and refined meshes.
For both simulations, excellent agreements with the DNS
data are observed, although the distributions between the
SGS and LES scale parts are quite different between the two
simulations. These two figures also demonstrate that the sta-
tistical convergence is correctly achieved.

Equation �64� has demonstrated that the subgrid-scale
model satisfies the weak form of realizability conditions. As
an illustration of that result, the plane formed by the second
and third subgrid-scale invariants A2−A3 of Lumley is used
to check the realizability constraint in a particular case.
Lumley33 has shown that the possible turbulence states are
located inside a region bounded by a curvilinear triangle
formed by the straight line of the two-dimensional state veri-
fying the equation A3−A2+8/9=0 and by the two curves of
the axisymmetric states verifying the equation �A2�=61/3A3

2/3.
Figure 11 shows the calculated trajectories using the turbu-
lent subgrid-scale model in the plane of the subgrid-scale
invariants. The solution trajectories are computed along a
straight line normal to the wall in a cross section of the

channel. As expected, the solution trajectories remain inside
the curvilinear triangle of realizability, so that the realizabil-
ity conditions �60�–�62� are well satisfied. When moving
from the two rigid walls toward the centerline of the channel,
the trajectories depart from the upper region of the triangle
and run along similar curves then arriving close to the origin
where a quasi-isotropic state is reached.

Figure 12 shows the evolutions of two-point correlation
functions

Rii�x1,x2,x3� =
�ui��x1,x2,x3�ui��x1 + r1,x2,x3��LES

�ui�
2�x1,x2,x3��LES

�69�

for i=1,2 ,3 �no summation�, R11, R22, and R33, versus the
streamwise distance x1 where r1 ranges from 0 to �. The
correlations are plotted in the center height of the channel
x3=�. The regular decay of the curves confirms that the box
size can be considered as adequate because the tensor corre-
lations do return to zero for r1=�. Considering that these
calculations are time consuming, we indeed choose the mini-
mal size of the box ensuring vanishing of correlations. More-
over, a previous trial numerical simulation using a box twice

FIG. 7. Turbulent large scale stresses ���ii�LES
1/2 � /u�. �a� LES 1; �b� LES 2; �,

i=1; �, i=2; �, i=3. R�=395. FIG. 8. Turbulent Reynolds stresses ����ii�SGS�+ ���ii�LES��1/2 /u�. �a� LES 1;
�b� LES 2; �, i=1; �, i=2; �, i=3; —, DNS. R�=395.
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as large as in the streamwise direction for an almost similar
grid definition has led to nearly identical solutions. As al-
ready observed with LES simulations of Moin and Kim6 �cf.
Fig. 6�, the correlation for the velocity in the streamwise
direction R11 is larger than the corresponding transverse cor-
relations R22 or R33. The slow decay of R11 for increasing r1

indicates the presence of highly elongated eddies in the
streamwise direction. Figure 13 shows the isosurfaces of the
instantaneous vorticity vector �i� /u�

2, where �i=�ijk�uk /�xj

for i=1,2 ,3 in the streamwise, spanwise, and normal direc-
tions. According to the experimental flow observations,34 it
can be seen that the streamwise vortices which are a central
dynamical element in wall turbulence are reproduced by the
LES simulation with qualitative agreement. The isosurface
structures associated to the streamwise and normal compo-
nents of the vorticity vector appear less organized than those
associated to the spanwise component which are more elon-
gated in the streamwise direction. The spanwise component
of vorticity fluctuations �2 of higher intensity than the other
components attains its maximum at the wall and then de-
creases toward the center of the channel. Two values for
��2�� /u�

2=0.1 are considered in Fig. 13�b�. It is obvious that

more quantitative structural information requires a DNS
mesh resolution to be properly computed. However, it can be
roughly estimated through two-dimensional �2D� view from
Fig. 13�b� that the center of the streamwise vortex is located
on the average at x3

+�20 in agreement with the DNS data.35

But more insight shows that the spanwise distance between
two counterrotating vortex pairs is of the order 80u� /� �x3

+

=80� which is somewhat overpredicted in comparison with
experimental or DNS data �50u� /��. The present LES mesh
resolution is probably not really sufficient in the spanwise
direction to get a fine definition of longitudinal structures.
However, it is remarkable that the present calculation, in
spite of its coarse grid, succeeded to obtain a good qualita-
tive prediction of these structures. The isosurface of large-

scale pressure fluctuations defined as P̂= P̄− �P�, for the di-

mensionless value P̂ /�wu�
2=−2.5 are plotted in Fig. 14. Local

low pressure regions which correspond to the cores of strong
vortical fluid motion are visible. The larger flow structures
seem sometimes to be composed of an ensemble of hairpin
vortices that are inclined at the wall.

FIG. 9. Turbulent subgrid-scale shear stress ���13�SGS� /u� and turbulent large
grid-scale shear stress ���13�LES� /u�. �a� LES 1; �b� LES 2; �, SGS; �, LES.
R�=395.

FIG. 10. Turbulent shear stress ����13�SGS�+ ���13�LES�� /u�
2. �, �a� LES 1; �b�

LES 2; —, DNS. R�=395.
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VI. LES OF CHANNEL FLOW WITH WALL INJECTION

The objective is to investigate the flow in a channel with
appreciable fluid injection through a permeable wall as
sketched in Fig. 15. The presence of wall injection is encoun-
tered in the combustion induced flowfields in solid propellant
rocket motors where the mass injection simulates the propel-
lant burning.36,37 Modeling such flow for predicting the bal-
listics of the rocket is a challenging task because the flow
evolves from a laminar to a turbulent regime in the motor
chamber due to the transition of the mean axial direction.
Moreover, in comparison with the shear stress of wall-
bounded flow, the mass transfer modifies the shear stress
distribution across the flow which is continuously evolving.
The literature indicates that a first-order statistical model
such as k−� model fails to predict such complex flows38

contrary to a second-order model which is more
appropriate.39 This fact has been confirmed recently in Refs.
2 and 20 using a k−� and an advanced Reynolds stress

model for injection induced flows. However, the RSM model
cannot provide structural information on the flows. LES
simulation is another promising route for studying motor in-
ternal flows. In the past, Piomelli et al.40 used a Smagorinsky
model to simulate fully turbulent channel flows in a chamber
motor. The fluid was injected through the lower wall and
removed at the same rate through the upper one, whereas
periodic boundary conditions were applied in the inlet and
outlet domains. It has been found that injection enhances
turbulent fluctuations and decreases the shear stress. More
recently, Apte and Yang41 performed large eddy simulations
using a dynamic Smagorinsky model for the flow in a porous
chamber with surface mass injection representative of solid
rocket motors. In that simulation, a refined mesh �640
�100�140=8 960 000 grid points� in the streamwise, span-

FIG. 11. Solution trajectories produced by the turbulent subgrid-scale model
in fully developed channel flow projected onto the second-invariant/third-
subgrid-scale invariant plane. �, LES 1. R�=395.

FIG. 12. Streamwise two-point correlation function. — R11; – – R22; –. –
R33. x3

+=390, x3=�; LES 2. R�=395.

FIG. 13. Isosurfaces of instantaneous vorticity vector �i=�ijk�uk /�xj. �a�
Streamwise direction �1� /u�

2=0.04. �b� Spanwise direction ��2�� /u�
2=0.10.

�c� Normal direction �3� /u�
2=0.03. case 1. R�=395.
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wise, and normal directions was used. As a result of the
simulation, the different flow regimes were successfully re-
produced and the turbulence intensity was well predicted. In
addition, these authors indicated that the fluid injection en-
hances the formation of roller-like vortical structure close to
the injection surface. The flow appears to be essentially two
dimensional up to the midsection of the chamber and be-
comes three dimensionnal when the turbulence transition oc-
curs. Note that such a computational simulation cannot be
performed easily for practical applications because of the
prohibitive CPU time. For that reason, Wasistho and Moser21

involved in the center for simulation of advanced rockets
program have suggested to apply a model which can match
detached eddy simulation near the wall and conventional
LES away from the wall. The DES approach is a model of
low resolution which derives from the Spalart–Almaras
model.18 This model takes into account a computed length
scale which is a function of the mesh size in the wall direc-
tion. However, because of its formulation, it is empirically
sensitive to the grid spacing refinement. In a first step of their
strategy, these authors have performed numerical simulations
of fully turbulent channel flows using, respectively, the DES
and LES models. Several test cases have been conducted to
study the mesh influence. As follows: DES for a coarse mesh
64�32�64 at R�=2000 �case D�; LES dynamic model for a
refined mesh 64�64�128 at R�=180 �case A� and LES for
a coarse mesh at R�=1000 �case F�. Their results have shown
that the DES �case D� failed to predict the logarithmic wall
layer of the velocity. On the other hand, it was found that the
LES performed on the refined mesh �case A� produced good
results for both the velocity and the turbulent stresses,

whereas the LES performed on the coarse mesh �case F�
overpredicted by a factor 2 the rms stress values. Indeed,
these investigations confirm the limitation of DES and LES
models in their capacities to reproduce accurately turbulent
flows for coarse meshes, so that these authors consider21 that
new efforts need to be made in that direction for engineering
applications. In the present case, one can mention that the
new partially integrated transport model has been developed
in this aim. This model which allows to bridge URANS and
LES methods appears in that line of thought.

The present study is concerned with LES simulation of
the flow which develops in the specific experimental setup
VECLA made at ONERA.42 The setup is composed of a
channel bounded by a lower porous plate and an upper im-
permeable wall. Cold air at 303 K is injected at a high uni-
form mass flow rate m=2.619 kg/m2 s through a porous ma-
terial with porosities 8 �m or 18 �m giving an injection
velocity of 1.5 m s−1. Values of the length, the height, and
the width of the channel are, respectively, L1=58.1 cm, L2

=6 cm, and �=1.03 cm. The pressure at the head end of the
channel is 1.5 bars whereas the pressure in the exit section is
1.374 bars. Because of the mass conservation, the flow Rey-
nolds number Rm=�mum� /�, based on the bulk density �m,
the bulk velocity um and the total height �, varies linearly
versus the axial distance of the channel. It ranges from 0 to
�9�104. The injection Reynolds number Rs=�sus� /�, de-
fined by the injection density �s, the velocity us, the dynami-
cal viscosity �, at the porous surface, is close to 1600. Ex-
periments in three-dimensional geometry have been carried
out by Avalon.42 The mean velocity profiles and the Rey-
nolds stress turbulent intensities have been measured in eight
sections of the channel located at x1=3.1, 12, 22, 35, 40, 45,
50, and 57 cm with a hot-wire probe. The wire has a length
of 2 mm and a diameter of 150 �m. The bulk velocities um

passing through these sections are 4.61, 20, 32, 52, 60, 68,
76, and 90 m/s. Periodic boundary conditions are imposed
in the spanwise direction for a width domain defined as two-
channel heights. A constant pressure boundary condition is
applied for the exit section of the channel. Boundary condi-
tions for impermeable walls assume zero velocity and con-
stant temperature, zero turbulent kinetic energy, and the wall
dissipation rate value �w=2����kSGS/�x2�2. For the perme-

TABLE III. Simulation parameters for the channel flow with wall injection.

Case N1 N2 N3 L1 /� L2 /� �1 /� �2 /� �3c /�

Present LES 400 44 80 56.4 2 0.141 0.045 0.011

FIG. 15. Schematic of channel flow with fluid injection of Vecla setup.

FIG. 14. Isosurfaces of pressure fluctuations. P̂= P̄− �P�. P̂ / ��wu�
2�=−2.5;

case 1. R�=395.
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able wall, a constant mass flow rate is imposed at the wall
temperature. Taking into account experimental measure-
ments in the immediate vicinity of the permeable wall which
show that the velocity follows a Gaussian distribution and
that the amplitude of the fluctuating velocity increases with
increasing injection velocity,42 the boundary conditions are
modeled by a twofold hypothesis. It consists in introducing a
modeled turbulence intensity level at the wall related to the

mean injection velocity defined as �s= �u2�u2�
˜ / ũs

2�1/2 in the
subgrid turbulence level and to apply a random forcing in
time but constant in space, at the surface injection to trigger
the turbulence transition in the resolved scale level.

The numerical simulation is performed on a medium
mesh composed of 400�44�80=1 408 000 grid points in
the streamwise, spanwise, and normal directions to the wall.
This mesh can be compared with the refined mesh of Apte
and Yang41 for a quasisimilar computational domain. In the
present case, a strong decrease in the number of grid points is
obtained because of the new subgrid-scale turbulence model.
The different ratios �i /� �i=1,2� of the mesh are indicated
in Table III. The grid is refined when approaching the per-
meable and impermeable walls. In order to provide a full
resolution for the flow in the wall regions, the smallest grid
size at the wall is 25 �m, leading to a dimensionless distance
for the first grid point from the wall x2

+�5. A relatively low
turbulence level �=0.01 has been considered. The magni-
tude of the white noise perturbation is 1% to destabilize the
large-scale flow.

The statistical mean flow properties are computed over a
time period of 10 ms after the unsteady flow convergence.
Figure 16 shows the evolution of the Reynolds number R�

=��u�� /2� based on the averaged density �� and the friction
velocity u� versus the longitudinal distance of the channel.
The averaged friction velocity is defined as u�=� 1

2 �u�w
2

+u�s
2 ��1/2, where u�w and u�s are the friction velocities com-

puted on the impermeable wall and on the injection surface,
respectively. An important flow characteristic is that the Rey-
nolds number ranges from 0 to �2200 at the exit section of

the channel �395 in the preceding section for the fully devel-
oped channel flow�.

A. Instantaneous flowfield structures

Figure 17 shows the development of the instantaneous
filtered Mach number contours in the plane �x1 ,x3� of the
channel. The Mach number ranges from 0 in the head end of
the channel to �0.35 in the exit section. Figures 18 and 19
describe the instantaneous spanwise filtered vorticity �̃2

=�ũ3 /�x1−�ũ1 /�x3, in different planes �x1 ,x3�, �x1 ,x2� of the
channel and provide the detail of the flow structures sub-
jected to mass injection, as well as the location of the tran-
sition which occurs for x1 /��35. Indeed, in the first part of
the channel, the contour lines present a regular behavior in
accordance with a quasilaminar flow regime. Then, the con-
tour lines evolve more rapidly due to the natural instabilities
which develop from the injection surface. In that region after
the transition location, the flow becomes turbulent showing
large energy carrying structures arising from the injection
surface which are convected by the mean flowfield to the
exit. The flow is then characterized by the presence of roll-up
vortex structures of large magnitude of vorticity. Because of
the injection, it is found that these structures are inclined in
the normal direction to the axial flow as previously observed
by Apte and Yang.41 One can notice that these vortices are
somewhat different from the elongated streamwise vortices
which lie in the impermeable wall region. Figure 19 indi-
cates that the intensity of the vortices in the planes �x3 /�
�0;x3 /��0.5;x3 /��1� decreases from the injection sur-
face to the center of the channel along a normal distance to
the wall. As a result of interest, one can observe that the
vortical structures appear two dimensional in the upstream
transition location and break down to form three-dimensional
structures for x1 /��35 after the flow transition. Note that
the spanwise direction plays an essential role in the vortex-
stretching mechanisms and therefore in the prediction of the
turbulence intensity. Indeed, previous simulations performed
on different meshes taking into account less than 40 planes in
the spanwise direction have underpredicted the turbulence
intensity of the flow. On the other hand in comparison with
the present mesh, the flow intensity remains unchanged when
continuing on increasing the spanwise mesh resolution. This
result is usually observed for LES simulations. It means that

FIG. 16. Axial variation of Reynolds number based on the friction velocity
R�=u�� /2�.

FIG. 17. Snapshots of instantaneous filtered Mach number in the �x1 ,x3�
plane, x2 /�=1; 0�Mach�0.34; �=30.

FIG. 18. Snapshots of spanwise instantaneous filtered vorticity in the �x1 ,x3�
plane, x2 /�=1; −4�104 s−1��̂�4�104 s−1; �=40.
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the three-dimensional component plays an essential role in
the acting mechanisms of the flow and in particular in the
capture of elongated near wall eddies.

B. Mean velocity profiles and turbulence statistics

Figure 20 shows the velocity profiles at different cross
sections in the channel. A very good agreement between the
LES profiles and the experimental data is obtained. Relative
to the permeable wall region, the velocities in the boundary

layer generated by the impermeable wall increases rapidly.
Figures 21 and 22 describe the evolutions of the dimension-
less turbulent stresses normalized by the bulk velocity
��ii�1/2 /um �i=1,3� in the streamwise and normal directions
with available experimental data. As a result of simulation, it
is found that the flow turbulence intensity in each section of
the channel is reasonably predicted. However, some minor
discrepancies remain in regard to the stress profiles in the
vicinity of the two walls. The simulation reveals the presence
of turbulent peaks in the wall regions, whereas the present
experimental data describe quasiflate evolutions for each sec-
tion. This disagreement is mainly attributed to the measure-
ments which are altered in the vicinity of the walls. Indeed,
the probe �diameter 150 �m� is introduced from the imper-
meable wall along the normal direction x3 in the channel
height �1.03 cm�. Because of the probe dimension which is
not negligible to the channel height, the flow is locally per-
turbed. In that condition, the probe is assumed to provide
averaged measurements on the wire length integration. This
is obviously the case for the impermeable wall region where
the turbulent peak occurs in the buffer layer �see Fig. 8� and
is not captured by the present experiment. For the fully tur-
bulent flow regime, note that the lowest cutoff frequency
given by the cutoff wave number is �c=cum /2�
�100 kHz, whereas the typical upper frequency of the probe
is about 20 kHz, so that the probe filters the high frequencies
of the signal. Having in mind the previous discussion, we are
led to think that the turbulence intensity obtained by the LES
and compared to the experiment �particularly for the stresses�
plotted in Figs. 20–22 is in fact reasonably predicted. These

FIG. 19. Snapshots of spanwise in-
stantaneous filtered vorticity in the
�x1 ,x2� plane, �a� x3 /��0; �b� x3 /�
�0.5; �c� x3 /��1; −4�104 s−1��̂
�4�104 s−1, �=40.

FIG. 20. Mean velocity profiles in different cross sections. Symbols, experi-
mental data; —, LES; 12 cm, �; 22 cm, �; 35 cm, �; 40 cm, �; 45 cm, �;
50 cm, �; 57 cm, 	.
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figures reveal also other flow characteristics. It can be seen
that the turbulence is more developed in the permeable wall
region than for the impermeable wall region, so that the fea-
ture of the fluid injection is to shift the turbulence toward the
core flow. Figure 23 shows the evolutions of the shear stress
��13� /um

2 at different cross sections in the channel. A good
agreement is obtained with the experimental data. In com-
parison with the standard distribution of wall-bounded flows,
the fluid injection through the surface yields nonsymmetry
shear stress profiles. In order to characterize the part of the
modeled turbulent scales among the part of the resolved
scales, the LES and SGS stresses ��33�1/2 are plotted in the
last section x1=57 cm when the flow is fully turbulent, as
shown by Fig. 24. One can observe that the intensity of the
large-scale part remains greater than those of the subgrid-
scale part, particularly in the core flow. It is also noticed in
Fig. 24 that the large-scale part follows very well the mea-
surements of the probe which is not sensitive to high fre-
quencies as mentioned previously.

VII. CONCLUSION

A new partially integrated transport model for subgrid-
scale stresses and dissipation rate has been proposed for LES
of unsteady flows which present nonequilibrium turbulence
spectra. As a result of modeling in the spectral space, a for-
mally continuous derivation of the model has been obtained
when the cutoff location is varied, which guaranties compat-
ibility with the two extreme limits that are the full statistical
Reynolds stress model and direct numerical simulation. The
present model has been successfully calibrated on the well-
known fully turbulent channel flow. The application to the
channel flow with wall injection then has been considered for
illustrating the potentials of the method. It has been found
that the different flow regimes as well as the transition phe-
nomena are well reproduced and that the velocities and the
turbulent stresses agree fairly well with the experimental
data. Moreover, the flow structures have been analyzed in
detail. More extensive applications should be, however, nec-

FIG. 21. Streamwise turbulent stresses. �,
���11�1/2� /um; �, experimental data; �a� x1=40 cm; �b�
45 cm; �c� 50 cm; �d� 57 cm.
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essary in the future to assess more thoroughly the proposed
approach.

APPENDIX: EXACT TRANSPORT EQUATION OF THE
TURBULENT SUBGRID-SCALE ENERGY

Turbulent fluid with constant density is considered. The
instantaneous Navier–Stokes equation for velocity is

�ui

�t
+

�

�xj
�uiuj� = −

1

�

�p

�xi
+ �

�2ui

�xj�xj
. �A1�

In a first approximation, disregarding the higher order terms,
the filtered equation can be written as

�ūi

�t
+

�

�xj
�ūiūj� = −

1

�

�p̄

�xi
−

�

�xj
ui�uj� + �

�2ūi

�xj�xj
. �A2�

A term by term difference between these two equations

yields the transport equation of the subgrid-scale fluctuating
velocity:

�ui�

�t
+ ūj

�ui�

�xj
= − uj�

�ūi

�xj
−

1

�

�p�

�xi
+

�

�xj
�ui�uj� − ui�uj��

+ �
�2ui�

�xj�xj
. �A3�

The instantaneous velocity is then decomposed into the mean
statistical velocity denoted �u�, the large-scale velocity v
= ū− �u�, and the subgrid-scale fluctuation, so that the three
term decomposition can be written as

u = �u� + v + u�. �A4�

Taking into account this decomposition, Eq. �A3� is rewritten
as follows:

FIG. 22. Normal turbulent stresses. �, ���33�1/2� /um; �,
experimental data; x1=40 cm; 45 cm; 50 cm; 57 cm.
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FIG. 23. Shear stresses. �, ��13� /um
2 ; �, experimental

data; �a� x1=40 cm; �b� 45 cm; �c� 50 cm; �d� 57 cm.

FIG. 24. Normal turbulent stresses �m/
s�. �, ���33�SGS

1/2 �; �, ���33�LES
1/2 �; �,

����33�SGS�+ ���33�LES��1/2; �, experi-
mental data; x1=57 cm.
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�ui�

�t
+ �uj�

�ui�

�xj
= − uj�

��ui�
�xj

−
1

�

�p�

�xi
+

�

�xj
�ui�uj� − ui�uj��

− uj�
�vi

�xj
− v j

�ui�

�xj
+ �

�2ui�

�xj�xj
. �A5�

Equation �A5� is multiplied by the fluctuating velocity ui�. By
applying the statistical averaging to this equation, the trans-
port equation of the subgrid-scale turbulent kinetic energy
kSGS= �ui�ui�� /2 is obtained which then reads

�kSGS

�t
+ �uj�

�kSGS

�xj
= − �ui�uj��

��ui�
�xj

− �ui�uj�
�vi

�xj
�

− �� �ui�

�xj

�ui�

�xj
� −

1

2

�

�xj
�ui�ui��uj�

+ vi�� −
1

�

�

�xi
�ui�p�� + �

�2kSGS

�xj�xj
.

�A6�

Interpretation of the different terms in the right-hand
side of Eq. �A6� is given in the following. The first term
represents the turbulence production caused by the mean and
large-scale velocity gradients, the second term corresponds
to the transfer process due to the action of large-scale struc-
tures on the subgrid-scale turbulence, the third term is the
viscous dissipation rate and the other terms are related to the
turbulent and viscous diffusion processes. Equation �A6� is
equivalent to Eq. �23� in which the terms decomposition
�A4� is introduced.
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