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The basis of the partially integrated transport modeling method was introduced in pa-
pers of Schiestel and Dejoan [“Towards a new partially integrated transport model for
coarse grid and unsteady turbulent flow simulations,” Theor. Comput. Fluid Dyn. 18,
443 (2005)] and Chaouat and Schiestel [“A new partially integrated transport model
for subgrid-scale stresses and dissipation rate for turbulent developing flows,” Phys.
Fluids 17, 065106 (2005)]. This method provides a continuous approach for hybrid
Reynolds averaged Navier-Stokes (RANS)-large eddy simulation (LES) simulations
with seamless coupling between RANS and LES regions. The method, like in usual
LES techniques, makes use of space filtering in the turbulent field. In the foundation
papers cited above and in the main applications considered so far, the filter width has
been supposed constant or at least slowly varying. In the present paper, we examine
the effect of variable filter width in the model equations and how to account for this
effect in practical numerical simulations. With the aim to illustrate the theoretical
development of the effect of varying filter width in time and space on the governing
equations of mass, momentum, and turbulence model, and to show the usefulness of
the proposed approach, we perform then numerical simulations of isotropic decaying
turbulence. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4833235]

I. INTRODUCTION

Large eddy simulation1 (LES) which consists in filtering the instantaneous Navier-Stokes equa-
tions with the aim to compute the large scale motions of the flow while the smaller scales are modeled
has been developed actively in the past two-decade thanks to the increase of super computer-power2

and rapidly became a widespread practice. The scale separation is usually made from a filtering oper-
ation. But, compared to the statistical averaging used in Reynolds averaged Navier-Stokes (RANS)
techniques which satisfies the general Reynolds rules, the filtering operation proved to be more
tricky because of non-commutativity with respect to other mathematical operations like products or
derivatives. The problem is more acute when using strongly variable mesh steps. In this framework,
numerous works and an important literature have been devoted to the study of commutation terms
arising from the non-commutativity of the filtering process with temporal or spatial derivatives.
More precisely, using a variable filter width will bring new additional terms in the filtered momen-
tum and the turbulence equations because the filtering operation and the derivative operation do not
commute exactly. This is generally known as the commutation errors and has given rise to numerous
fundamental studies.

Up to now, the LES method, however, is not always affordable for industrial applications involv-
ing high Reynolds numbers because of the prohibitive computational time and memory requirements,
contrarily to the RANS method which is still often used in industry in practice.3, 4 However, the
RANS approach, due to its lack of universality, may lead to difficulties in complex flows. This is
the reason which has led researchers involved in the community of turbulence to develop hybrid
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RANS-LES methods, especially for simulating engineering or industrial flows with acceptable com-
putational resources while retaining some beneficial aspects of the LES approach.5 Among these
hybrid RANS-LES methods, we focus interest in the partially integrated transport modeling (PITM)
method introduced by Schiestel and Dejoan6 using a two equation subfilter scale closure model and
by Chaouat and Schiestel7 for the extension to stress transport subfilter scale models which proved
to be a promising route of investigation. This method provides a continuous approach for hybrid
RANS-LES simulations with seamless coupling between RANS and LES regions.

Like in usual LES techniques, the PITM method makes use of space filtering in the turbulent
field. In the foundation papers cited above and in the main applications considered so far, the filter
width has been supposed constant or at least slowly varying in time and in space. But, depending
on the type of applications under consideration and the particular geometry of the flow, it may
be sometimes necessary to introduce strongly varying meshes and filters of different sizes. The
consequence of such a practice is that when the filter width is changed, the amount of resolved
turbulence energy relatively to the modeled turbulence energy gets modified.

At the present time, substantial progress has been made on the problem of commutation errors.
But many questions still remain open and the development of some practical techniques is desirable
in default of a fundamental revision of the approach (involving perhaps some kind of conditional
averaging?). A comprehensive overview of the main aspects of the general problem of commutation
errors can be found in particular in Ref. 8. The work of Ghosal and Moin9 was among the first one
to properly define and analyze variable filtering in complex geometries. These authors have used
a mapping technique from the computational space to a transformed domain with uniform grid in
order to derive the commutation error. Then, they were led to define filters that commute up to an
error which is of second order in the filter width. Van Der Ven10 has constructed a family of filters
with nonuniform filter widths that commute with differentiation up to any given order. Other authors,
such as Fureby and Tabor11 have examined the different mathematical constraints on the filtering
operation in LES and have considered, among all these problems, the commutation error in the
filtered Navier-Stokes equations. These authors have shown using a Taylor series expansion that it
is possible to get a general expression for the commutation error. Then, they quantified this effect in
the fully developed channel flow performed on a non-uniform computational grid. Note that a class
of filters for LES calculations of turbulent inhomogeneous flows was presented by Vasilyev et al.,12

giving a general set of rules for constructing discrete filters in complex geometries. With these
filters, the commutation error between numerical differentiation and filtering can be made arbitrarily
small. A method for constructing discrete filters was also given by Marsden et al.,13 for LES of
turbulent flows on unstructured meshes, for which the commutation error between differentiation
and filtering can also be made arbitrarily small. As pointed out by Ghosal and Moin9 and Van
Der Ven,10 it is even possible to derive variable filters that can commute with the derivative, up
to a certain fixed order. The authors Iovieno and Tordella14 gave an interesting new procedure for
approximating the noncommutation terms in variable filtering. These approximations make use of
an additional super filter !̃ built with twice the width ! of the calculation filter in order to evaluate
the derivatives ∂/∂! with respect to !. A refined spectral analysis was proposed by Vasilyev and
Goldstein15 to get information about the local spectral content of the commutation error in LES, its
dependence on the filter shape and the non-uniformity of the filter width. They illustrated the analysis
by performing simulations on homogeneous turbulence. More recently, Hamba16 evaluated the
magnitude of commutation errors by means of LES comparisons with a direct numerical simulation
(DNS) of the fully turbulent channel flow. He showed that the noncommutation terms may reach
important values and cannot be neglected when performing hybrid RANS-LES simulations. Another
harsh aspect of the commutation problem usually appears in zonal hybrid methods at the RANS-LES
interface. Most often, the problem arises in wall bounded flows in which the interface is parallel to the
wall producing the well known log-layer mismatch.17 To solve the problem, stochastic forcing18 is
usually introduced in the computational domain as well as also additional filtering.19 More recently,
the work of Hamba16 emphasized the physical meaning of these commutation terms. As a result of
interest, Hamba showed that the commutation terms could be interpreted as additional fluxes in the
second moment equations. As expected, this point of view was found in complete agreement with
the methods developed very earlier in previous Refs. 20–22. The work of Cubero and Piomelli23



125102-3 B. Chaouat and R. Schiestel Phys. Fluids 25, 125102 (2013)

explored an alternative approach in which the filter width was entirely decoupled from the grid size.
The effect of using a variable filter to grid ratio was analyzed in the case of developing channel
flow. This method aimed in reducing the numerical errors arising in variable mesh LES. As a result
of interest to mention, one can remark that the PITM method relies on subfilter modeling and
consequently is directly amenable to such an approach with filtering decoupled with the grid. Even
now, the commutation error remains an important issue in LES that is still not solved in a satisfactory
way in the literature, and fundamental studies currently developed have led to some major advances.
For instance van der Bos and Geurts25 used a priori tests based on DNS data in turbulent mixing
layers to validate a new model for the kinetic energy dynamics of the commutator-error. This type
of work has been pursued by the same authors using DNS data to get a quantitative comparison
between the dynamical importance of the commutator error and the subgrid scale (SGS) stress, as
indicated in Ref. 26. In this work, the effect of skewness of the filter on the commutator error was
found very important. van der Bos and Geurts27 also showed that the effect of the commutator errors
corresponds to the local source of turbulent flow scales, depending on the variation of the filter
width along the flow path. This Lagrangian context suggested significant correlation between the
material derivative of the filter width and the production or dissipation of kinetic energy due to the
commutator error. This was confirmed by a priori analysis in the mixing layer and leaded to a new
Lagrangian model. Sudden step refinement in the grid size may produce harsh anomalous effects
in the numerical simulation, more evidently unphysical than smooth variations in the grid size. The
simulation of a plane channel flow using a block-structured finite volume method made by Fröhlich
et al.,24 showed for instance that jumps may happen in the stress profiles at the refinement interface.
All these numerical studies were complemented by a more theoretical analysis worked out by Geurts
and Holm.28 It was suggested in particular that rather than controlling the size of the commutator
errors by increasing the order of the filter, the commutator error can be more efficiently controlled
by the spatial variations in the filter properties. Variable resolution computations in the framework
of the PANS (partially averaged Navier-Stokes equations) model initially developed for performing
hybrid RANS-LES simulations of turbulent flows have been recently carried on by Girimaji and
Wallin.29 This approach differs somehow from the true commutation error as it deals with spatio-
temporal variations of the energy ratios (resolved to modeled ratios). The proposed approach is very
practical but inevitably suffers from the use of an empirical Boussinesq closure model for modeling
the residual terms, its field of applicability being not known. This technique may be questionable
on the physical point of view. Another route to circumvent the problem was to use time filtering
like introduced by Pruett.30 For applications to LES, time filters enjoy some advantages relatively
to spatial filters. Among these, they can commute more naturally with differential operators. The
properties of the residual stresses have been studied further by Pruett et al.31

In the present paper, we will examine the effect of variable filter width in the PITM model
equations and how to account for this effect in practical numerical simulations. For this method,
which is by essence a continuous hybrid RANS-LES method with seamless coupling between the
RANS and LES regions, we shall deal with continuous changes in the filter width, so that the
noncommutation problem will not be concentrated through an interface but will be in the contrary
distributed in the whole field. In a general way, the two possible sources of noncommutation terms
included in the equation of the filtered motion appear, on the one hand, in the material derivative
and, on the other hand, in the diffusion terms involving the second derivative of the fluid velocity or
the first derivative of the stresses. The second contribution, linked to the viscous terms composed by
the second derivative in space of the velocity, is more likely to act in low Reynolds number regions.
So, the noncommutation terms in the material derivative will be treated here as terms of primary
importance. In the PITM method, the subfilter scale stress and dissipation-rate transport equations
are coupled to the equations of motion and have to be solved at each time advancement of the
computation. Consistency in the treatment of commutation terms for both the momentum equations
and the subfilter model is then necessary. Using the rules of convolution operators and a mathematical
formalism put in place to handle the filtering process, we will first find the complex expressions of the
commutation terms appearing in the filtered Navier-Stoke equations and in the transport equations
for the subfilter turbulent energy, the subfilter turbulent stress, and the dissipation-rate. For a purpose
of explanation, we will consider the Fourier transform of the dynamic equation of the two-point
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fluctuating velocity correlation tensor in the wave vector space. We will show that the terms arising
from the commutation errors can be indeed related to additional transfer fluxes passing through the
cutoff wave number, from the resolved scales to the modeled scales or vice-versa. We will then
provide a physical method for evaluating the commutation terms in the physical space using a super
filter, in addition to the current filter, as well some possible improvements made in connection with
the Kolmogorov law in situation of spectral equilibrium. With the aim to illustrate the theoretical
development of the effect of the varying filter width in time and space on the governing equations of
mass, momentum, and turbulence model, and to show the usefulness of the proposed approach, we
will finally perform numerical simulations of isotropic decaying turbulence on a fixed grid, and on
several expanding grids without and with the correction terms arising from the commutation errors.

II. THE AVERAGING PROCESS AND FILTERING APPROACH

A. The averaging process

Turbulent flow of a viscous incompressible fluid is considered. The Reynolds averaged Navier-
Stokes method in the statistical approach assumes that the variable φ(x, t) function varying in time
and space can be decomposed into an ensemble average part 〈φ〉 and a fluctuating part that embodies
all the turbulent scales φ′ such as φ = 〈φ〉 +φ′. From its definition, the statistical mean is defined as

〈φ(x)〉 = lim
N→∞

1

N

N∑

j=1

φ j (x, t), (1)

where φj is the result associated with the j process and N, the total number of realizations of the
flow. In practice, if assuming an ergodic assumption, the Reynolds averaging is obtained from time
averaging over a sufficiently long period of time T in comparison with the characteristic turbulent
time scale given itself by the ratio τ = k/ε where k and ε denote the turbulent energy and its
dissipation-rate, respectively. In the case where T & τ , one gets

〈φ(x)〉 =
1

T

∫ T

0

φ(x, t) dt. (2)

This approximation cannot be used in unsteady turbulent flows in the mean, except in the particular
case of periodic flows in which phase averaging can be used. In most theoretical studies, the mean
value is given by statistical averaging which allows a more consistent and general formalism in the
turbulence equations.

B. The filtering approach

On the other hand, in large eddy simulations, the variable φ is decomposed into a large scale
(or resolved part) φ̄ and a subfilter-scale fluctuating part φ> or modeled part such that φ = φ̄ + φ>.
The filtered variable φ̄ is defined by the filtering operation as the convolution with a filter G in space

φ = G ∗ φ (3)

that leads to the computation of a variable convolution integral

φ̄(x, t) =

∫

R3

G [x − ξ ,!(x, t)]φ(ξ , t)dξ . (4)

The instantaneous fluctuation φ′ appearing in RANS methodology contains in fact the large scale
fluctuating part φ< and the small scale fluctuating part φ> such that φ′ = φ< + φ>. So that the
instantaneous variable φ can then be rewritten like the sum of a mean statistical part 〈φ〉, a large scale
fluctuating part φ< and a small scale fluctuating part φ> as follows φ = 〈φ〉 +φ< + φ>. The most
commonly used filters in the physical space are the box and Gaussian filters. Using the definition (4),
it is obvious to see that the Fourier transform of the filtered variable φ̄ in homogeneous turbulence
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is simply

̂̄φ(κ, t) = Ĝ(κ, κc) φ̂(κ, t), (5)

where κc is the cutoff wave number. If in the spectral space, the filtering operation is naturally
defined by the spectral cutoff wave number, the interpretation in the physical space by inverse
Fourier transform however leads in this case to some complexities because of the more intricate
form of the filter function as shown in Subsection A 1 of the Appendix. Space filtering defined in
Eq. (4) is used in most current LES methods, but it is also possible to derive time filtering as
introduced in Ref. 31.

III. FILTERED EQUATIONS

A. The effect of varying filter width in time and space

1. Commutation terms

Variable filters in space or time bring new important complexities in the form of the equations
and their treatment because additional terms appear when filtering the equations. The issue we want
to address in the present paper is how to obtain the filtered Navier-Stokes equations when applying
a variable filter and how to approximate efficiently the new terms that are appearing. Let us consider
the general case where the filter width varies in time and space, like in the case encountered for usual
applications to non-homogeneous flows, involving the variable filter function G [ξ ,!(x, t)]. Due
to the fact that the filtering operation does not commute with the space derivative, a commutation
term will consequently appear as shown in Subsection A 2 of the Appendix. The partial derivative
in space of the variable φ is then computed by means of the convolution operator defined in Eq. (4)
as

∂φ̄

∂x j

(x, t) =
∂φ

∂x j

(x, t) +
∂!

∂x j

∂φ

∂!
(x, t) (6)

showing that, in shorthand notation,

∂φ̄

∂x j

= βx j
(φ) +

∂φ

∂x j

, (7)

with

βx j
(φ) =

∂!

∂x j

(
∂G

∂!
∗ φ

)
=
∂!

∂x j

∂

∂!
(G ∗ φ) =

∂!

∂x j

∂φ̄

∂!
. (8)

In the same way, transposing this development in time variable, one can easily find that the partial
derivative in time is

∂φ̄

∂t
= βt (φ) +

∂φ

∂t
, (9)

with

βt (φ) =
∂!

∂t

(
∂G

∂!
∗ φ

)
=
∂!

∂t

∂

∂!
(G ∗ φ) =

∂!

∂t

∂φ̄

∂!
. (10)

With the aim to alleviate the presentation, we will consider first the restrictive case where the
convection velocity Uj is assumed to be not fluctuating. Then, the previous formula can be extended
to the material derivative

dφ

dt
=
∂φ

∂t
+ U j

∂φ

∂x j

. (11)

By operating the filter, one gets

dφ

dt
=
∂φ

∂t
+ U j

∂φ

∂x j

. (12)
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Using Eqs. (9) and (7), one obtains

dφ̄

dt
= βT (φ) +

dφ

dt
, (13)

where βT is a new function pertaining to the material derivative and that reads

βT (φ) = βt (φ) + U jβx j
(φ) =

d!

dt

(
∂G

∂!
∗ φ

)
=

d!

dt

∂φ̄

∂!
. (14)

We now consider the general case where the convection velocity is fluctuating in time like in
the Navier-Stokes equations. Most of all, if applying Eq. (7) for φ = ui, where ui denotes the
instantaneous velocity, using Eq. (8) for evaluation βx j

, one has to remark that the divergence of
the filtered velocity is not equal to zero, as usually made in large eddy simulations, but satisfies the
equation

∂u j

∂x j

=
∂ ū j

∂x j

−
∂!

∂x j

∂ ū j

∂!
= 0. (15)

In the remainder of the text, the material derivative pertaining to the instantaneous flow field will be
denoted as

d

dt
=
∂

∂t
+ u j

∂

∂x j

. (16)

Thus, in the case of an incompressible flow considered here, the material derivative of any quantity
φ can be written in the following form:

dφ

dt
=
∂φ

∂t
+
∂(u jφ)

∂x j

. (17)

In order to distinguish clearly the material derivative following the filtered flow from the material
derivative following the instantaneous flow, we introduce a different notation

D

Dt
=
∂

∂t
+ ū j

∂

∂x j

. (18)

This is implying that the material derivative for any filtered variable φ̄ reads

Dφ

Dt
=
∂φ

∂t
+ ū j

∂φ

∂x j

. (19)

Applying the filtering operation on Eq. (17) leads to

dφ

dt
=
∂φ

∂t
+
∂
(
u jφ

)

∂x j

. (20)

Then, using Eqs. (7) and (9) yields

dφ

dt
=
∂φ

∂t
− βt (φ) +

∂(u jφ)

∂x j

− βx j
(u jφ), (21)

with the definitions

βt (φ) =
∂!

∂t

∂φ̄

∂!
(22)

and

βx j
(u jφ) =

∂!

∂x j

∂(u jφ)

∂!
. (23)

The correlation u jφ appearing in Eq. (20) can be developed into the form

u jφ = ū j φ̄ + [u jφ − ū j φ̄] = ū j φ̄ + τ (u j ,φ), (24)
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where

τ (u j ,φ) = u jφ − ū j φ̄, (25)

so that Eq. (21) can be rewritten into the following form including the derivative and the subfilter
stresses:

dφ

dt
=
∂φ̄

∂t
+
∂(ū j φ̄)

∂x j

+
∂τ (u j ,φ)

∂x j

− βt (φ) − βx j
(u jφ). (26)

The function βx j
(u jφ) given by Eq. (23) can be also developed in a more explicit form using the

decomposition (24) and one can easily find

βt (φ) =
∂!

∂t

∂φ̄

∂!
, (27)

βx j
(u jφ) =

∂!

∂x j

∂

∂!

(
ū j φ̄ + τ (u j ,φ)

)
, (28)

or

βx j
(u jφ) = u j

∂!

∂x j

∂φ

∂!
+ φ̄

∂!

∂x j

∂ ū j

∂!
+
∂!

∂x j

∂

∂!
τ (u j ,φ) = u jβx j

(φ) + φ̄
∂!

∂x j

∂ ū j

∂!
+
∂!

∂x j

∂

∂!
τ (u j ,φ).

(29)

Equation (28) reveals some interesting points which should be emphasized. The first contribution
is pertaining to the material derivative D/Dt whereas the second term involves the subfilter stresses.
Then, the final result will be

dφ

dt
=
∂φ

∂t
+
∂(ū jφ)

∂x j

− βt (φ) − ū jβx j
(φ) +

∂τ (u j ,φ)

∂x j

−
∂!

∂x j

∂τ (u j ,φ)

∂!
− φ̄

∂!

∂x j

∂ ū j

∂!
. (30)

At this step, it is of importance to note these expressions are exact in a mathematical sense without
any approximation. Equation (26) will be the main functional operator that will be used as a base
throughout the following work. Using Eq. (15), it is of interest to remark also that the first two terms
in the RHS of Eq. (30) can be written equivalently as

∂φ

∂t
+
∂(u jφ)

∂x j

=
Dφ

Dt
+ φ

∂u j

∂x j

=
Dφ

Dt
+ φ

∂!

∂x j

∂u j

∂!
(31)

leading to the alternative expression

dφ

dt
=

[
Dφ

Dt
+
∂τ (u j ,φ)

∂x j

]

−
[
βt (φ) + u jβx j

(φ)
]
−
∂!

∂x j

∂τ (u j ,φ)

∂!
. (32)

In practice, although Eqs. (21)–(23) can be used in numerical simulations, we suggest in the present
work to use the simpler form retaining only the material derivative correction terms. Consequently,
the practical approximate equation consisting of neglecting the last term appearing in the RHS of
Eq. (32) will be

dφ

dt
≈

Dφ

Dt
−
[
βt (φ) + ū jβx j

(φ)
]
+
∂τ (u j ,φ)

∂x j

, (33)

where

βt (φ) + ū jβx j
(φ) =

∂!

∂t

∂φ̄

∂!
+ ū j

∂!

∂x j

∂φ̄

∂!
=

D!

Dt

∂φ̄

∂!
. (34)

The previous equations have been derived for a generic filter of any shape characterized by its
width !. Obviously, any parameter directly linked to the filter width like κc = π /! can be used.
Thus, in the particular case of the spectral splitting filter, one prefers to use as well κc for the extra
commutation term. In this case, Eqs. (22), (23), (27), and (28) still hold formally but they have to be
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written now as a function of the cutoff wave number κc as follows:

βt (φ) =
∂κc

∂t

∂φ̄

∂κc

, (35)

βx j
(φ) =

∂κc

∂x j

∂φ̄

∂κc

, (36)

βx j
(u jφ) =

∂κc

∂x j

∂

∂κc

(
ū j φ̄ + τ (u j ,φ)

)
, (37)

or

βx j
(u jφ) = ū jβx j

(φ) +
∂κc

∂x j

∂τ (u j ,φ)

∂κc

+ φ̄
∂κc

∂x j

∂ ū j

∂κc

. (38)

In the particular case of a spectral splitting, the commutation term β t(φ) can be expressed
analytically20 as shown in Subsection A 3 of the Appendix.

2. Consequences on energies

Let us apply Eq. (21) for φ = ui. One can easily obtain, taking account Eqs. (22) and (23)

dui

dt
=
∂ ūi

∂t
+
∂(ui u j )

∂x j

−
∂!

∂t

∂ ūi

∂!
−
∂!

∂x j

∂(ui u j )

∂!
(39)

or equivalently, if using Eq. (26)

dui

dt
=
∂ ūi

∂t
+
∂(ū j ūi )

∂x j

+
∂τ (u j , ui )

∂x j

−
∂!

∂t

∂ ūi

∂!
−
∂!

∂x j

∂

∂!

(
ū j ūi + τ (u j , ui )

)
, (40)

where

τ (ui , u j ) = τi j = ui u j − ūi ū j . (41)

In order to get an expression of the material derivative of the kinetic energy, the left and right hand
sides of Eq. (40) are multiplied by ūi with tensorial contraction. Taking into account Eq. (15), one
can easily obtain

ūi

dui

dt
=
∂

∂t

(
ūi ūi

2

)
+ ū j

∂

∂x j

(
ūi ūi

2

)
+ ūi ūi

∂!

∂x j

∂ ū j

∂!

+ūi

∂τ (u j , ui )

∂x j

−
∂!

∂t

∂

∂!

(
ūi ūi

2

)
− ūi

∂!

∂x j

∂

∂!

(
ū j ūi + τ (u j , ui )

)
(42)

and consequently,

D

Dt

(
ūi ūi

2

)
= ūi

dui

dt
+
∂!

∂t

∂

∂!

(
ūi ūi

2

)
+ ū j

∂!

∂x j

∂

∂!

(
ūi ūi

2

)
− ūi

∂τ (u j , ui )

∂x j

+ ūi

∂!

∂x j

∂τ (u j , ui )

∂!
.

(43)

This equation takes on a complex form because of the partial derivatives in space. However, it can be
simplified if considering only homogeneous flows in the statistical sense and if we assume also that
the filter width ! varies only in time (according to the homogeneity hypothesis). In this particular
case, the statistical averaging of Eq. (42) or (43) leads to

∂

∂t

〈
ūi ūi

2

〉
=

〈

ūi

dui

dt

〉

+
∂!

∂t

∂

∂!

〈
ūi ūi

2

〉
−

〈
ūi

∂τi j

∂x j

〉
. (44)
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B. Statistical interpretation in the spatial and spectral spaces for the cutoff
wave number filter

The best way to understand the effect of the filter is to work directly in the spectral space. In this
section, we consider the case of homogeneous anisotropic turbulence with a constant mean velocity
gradient to get the more general development as possible. We assume that the cutoff wave number
κc is only a function of time κc = κc(t) for the sake of simplicity. The present reasoning will be
developed in the statistical sense. The objective is to see that a part of the commutation term can be
indeed interpreted through statistical spectral partitioning. To prove this assertion, we need to refer to
the dynamic equation for the two point correlation spectral tensor in one-dimensional spectral space
which is the key equation in this framework. The transport equation of the one-dimensional spectral
tensor of the double velocity correlations is obtained by taking the Fourier transform and mean
integration over spherical shells from the transport equation for the double velocity correlation in
physical space. Spherical averages lead to a loss of directional information but the resulting equation
gains in simplicity, the averaged spectral correlations being then only function of the wavenumber
and no longer of the wavevector.22, 32–35 As a result these equations formally read22, 32, 36

Dϕi j (X, κ)

Dt
= Pi j (X, κ) + Ti j (X, κ) +*i j (X, κ) + Ji j (X, κ) − Ei j (X, κ) (45)

and the different terms appearing in the right-hand side of Eq. (45) are, respectively, the production,
transfer, redistribution, diffusion, and dissipation contributions. In this equation, the variable X pre-
cisely denotes the midway position X = 1

2
(x A + x B) between the two points x A and x B introduced

as the reference location in space. Equation (45) is written in order to account also for locally
homogeneous anisotropic turbulence in which a tangent homogeneous space may vary from one
physical point X to another. The mean material derivative is defined as

D

Dt
=
∂

∂t
+
〈
u j

〉 ∂

∂X j

(46)

and reduces to ∂/∂t in the case of strictly homogeneous turbulence. The integration of Eq. (45) over
the range [κm−1, κm] provides the transport equation for the partial turbulent stress τ

(m)
i j (Refs. 22

and 36)

Dτ (m)
i j

Dt
= P

(m)
i j + F (m−1)

i j + K(m−1)
i j − F (m)

i j − K(m)
i j ++

(m)
i j + J

(m)
i j − ε

(m)
i j , (47)

where in this equation, F (m)
i j denotes the cascade transfer, K(m)

i j is the additional flux due to the

variation in the spectrum splitting and ε
(m)
i j is the partial dissipation-rate within the range [κm−1, κm].

These quantities are defined by

τ
(m)
i j =

∫ κm

κm−1

ϕi j (X, κ)dκ, (48)

P
(m)
i j = −

∫ κm

κm−1

ϕi j (X, κ)
∂ 〈ui 〉

∂x j

dκ, (49)

F (m)
i j = −

∫ κm

0

Ti j (X, κ)dκ, (50)

K(m)
i j = −ϕi j (X, κm)

∂κm

∂t
, (51)

+
(m)
i j =

∫ κm

κm−1

*i j (X, κ)dκ, (52)

and

ε
(m)
i j =

∫ κm

κm−1

Ei j (X, κ)dκ. (53)
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Applying the general equation (47) to the particular range of wave numbers [0, κc], [κc, κd], and
[κd, ∞[ yields the exact partially integrated transport equations in a statistical sense that read

Dτ (1)
i j

Dt
= P

(1)
i j − F (1)

i j − K(1)
i j ++

(1)
i j + J

(1)
i j − ε

(1)
i j , (54)

Dτ (2)
i j

Dt
= P

(2)
i j + F (1)

i j + K(1)
i j − F (2)

i j − K(2)
i j ++

(2)
i j + J

(2)
i j − ε

(2)
i j , (55)

and

F (2)
i j + K(2)

i j = ε
(3)
i j . (56)

As a result of interest, one can see that the term K(1)
i j computed for κc using the relation (51)

K(1)
i j = −ϕi j (X, κc)

∂κc

∂t
, (57)

corresponding to the extra flux due to the variation in the cutoff location can be indeed interpreted as
a commutation error. In particular, one can obtain the transport equation for the resolved turbulence
energy by tensorial contraction of Eq. (54) leading to

Dk(1)

Dt
= P (1) − F (1) + E(κc)

∂κc

∂t
+ J (1) − ε(1). (58)

Equation (58) allows to determine the role played by the term involving the variation in the cutoff
wave number on the resolved scales. Indeed, in the case where the grid size increases with time
∂!(t)/∂t > 0 or E(κc)∂κc/∂t < 0, then a part of the energy contained into the resolved scales is
removed and fed into the modeled spectral zone, whereas on the contrary, when ∂!(t)/∂t < 0 or
E(κc)∂κc/∂t > 0, a part of energy coming from the modeled zone is injected into the resolved
scales . Equation (58) can be formally recovered in strictly homogeneous turbulence (the turbulence
diffusion term vanishes in this case) by taking the derivative of the density spectrum itself:

∂

∂t

∫ κc

0

E(κ, t)dκ =

∫ κc

0

∂E(κ, t)

∂t
dκ + E(κc)

∂κc

∂t
, (59)

with the correspondence of terms

∂

∂t

∫ κc

0

E(κ, t)dκ =
∂k(1)

∂t
(60)

and
∫ κc

0

∂E(κ, t)

∂t
dκ =

1

2

∫ κc

0

[
P j j (κ) + T j j (κ) − E j j (κ)

]
dκ = P (1) − F (1) − ε(1). (61)

Such extra terms coming from the material derivative are a key feature of the split spectrum models
introduced several years ago in Refs. 20–22 and also described in Ref. 37. It is of interest to make the
term by term correspondence with Eq. (44) that can be rewritten equivalently (using a time varying
cutoff κc instead of !) as

∂

∂t

〈
ūi ūi

2

〉
=

〈

ūi

dui

dt

〉

+
∂

∂κc

〈
ūi ūi

2

〉
∂κc

∂t
−

〈
ūi

∂τi j

∂x j

〉
, (62)

showing that ∂
〈

1
2
ūi ū j

〉
/∂κc is nothing more than the energy spectrum E(κc) and especially provides

a physical interpretation of the commutation term as also illustrated in Subsection A 4 of the
Appendix. All these developments and their physical interpretations are in agreement with the work
of Hamba.16 One remarks also that the first term in the RHS of Eq. (62) is just another equivalent
expression of the term appearing in the LHS of Eq. (61).
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C. General method to derive filtered equations with varying filters

In this section, we will show how to derive filtered equations with varying filters and analyze what
are the approximations that must be reasonably conceded in view to perform a practical numerical
simulation without being impeded by cumbersome equations. The basic equations of fluid mechanics
and the turbulence constitutive equations usually take the form of transport equations in which the
left hand side is the material derivative and the right hand side contains several terms involving
more or less complex mathematical products and derivatives of the flow field variables. The material
derivative has been already analyzed in Sec. III A 1. Let us consider now several typical situations
for the right hand side that may serve as templates for developing the method in general cases.

1. The first derivative

We are considering the first derivative of some quantity ψ and its filtered expression using
Eq. (7):

∂ψ

∂x j

=
∂ψ̄

∂x j

−
∂!

∂x j

∂ψ̄

∂!
. (63)

2. Higher order derivatives

Considering now

ψ =
∂χ

∂xk

allows to derive directly the expression for the filtered second derivative ∂2χ/∂x j∂xk . Applying two
times Eq. (7) gives

∂2χ

∂x j∂xk

=
∂

∂x j

(
∂χ

∂xk

)
=

∂

∂x j

(
∂χ

∂xk

)

−
∂!

∂x j

∂

∂!

(
∂χ

∂xk

)

, (64)

leading to

∂2χ

∂x j∂xk

=
∂2χ̄

∂x j∂xk

−
∂2!

∂x j∂xk

∂χ̄

∂!
−
∂!

∂x j

∂!

∂xk

∂2χ̄

∂!∂!
−
∂!

∂xk

∂2χ̄

∂x j∂!
−
∂!

∂x j

∂2χ̄

∂xk∂!
, (65)

which is of course a symmetric form with respect to the coordinates xj and xk. Dealing with the
higher order derivatives can be performed in the same manner, but the equations become even more
complex.

3. Product of two variables

The product of two variables such as (ψχ ) requires the introduction of the correlation of the
fluctuations

τ (ψ,χ ) = ψχ − ψ χ

and then

∂ψχ

∂x j

=
∂ψχ

∂x j

−
∂!

∂x j

∂ψχ

∂!

and

∂ψχ

∂x j

=
∂ψ χ

∂x j

−
∂!

∂x j

∂ψ χ

∂!
+
∂τ (ψ,χ )

∂x j

−
∂!

∂x j

∂τ (ψ,χ )

∂!
.
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4. Approximations in practical flow simulations

Consider a generic turbulence transport equation of the form as

dψ

dt
= f (ψ,Z) , (66)

in which ψ is some turbulence field variable and f (ψ,Z) contains several terms involving more or
less complicated mathematical expressions with various multiplications and derivations. The filtered
equation is

dψ

dt
= f (ψ,Z).

The filtered material derivative in the LHS can be calculated from Eq. (26) so that

dψ

dt
=
∂ψ̄

∂t
+
∂(ū j ψ̄)

∂x j

+
∂τ (u j ,ψ)

∂x j

−
∂!

∂t

∂ψ̄

∂!
−
∂!

∂x j

(
u jψ

)

∂!
(67)

or equivalently if using Eq. (32)

dψ

dt
=

Dψ

Dt
+
∂τ (u j ,ψ)

∂x j

−
D!

Dt

∂ψ

∂!
−
∂!

∂x j

∂τ (u j ,ψ)

∂!
, (68)

D!

Dt
=
∂!

∂t
+ ūk

∂!

∂xk

. (69)

Then, the filtered transport Eq. (66) can be written in the general form as

Dψ

Dt
= f (ψ, Z ) −

∂τ (u j ,ψ)

∂x j

+
D!

Dt

∂ψ

∂!
+
∂!

∂x j

∂τ (u j ,ψ)

∂!
. (70)

It is foreseeable that in most cases, the function f being ever so little complicated, the resulting
Eq. (70) will become nearly intractable. So, to remain as simple as possible for conducting computer
applications in real flows, we suggest to retain only the non-commutative term arising from the
material derivative and we will discard the other commutation terms coming from the RHS of the
model equation (66). The final approximate equation for practical applications then reads

Dψ

Dt
= f (ψ, Z ) −

∂τ (u j ,ψ)

∂x j

+
D!

Dt

∂ψ̄

∂!
. (71)

This approximation corresponds in fact to the relation (12) in which the advection velocity was
considered as constant. There is another argument in favor of approximation (71) suggested by the
following remark. When considering the statistical mean of turbulence kinetic energy, the second
term on the RHS of Eq. (71) is the only term that gives rise to the extra transfer term in Eq. (59).
In practice, we shall remind that, it is only necessary to apply Eq. (12) to derive these practical
approximations. Also, in Eq. (71) the complicated source term has been approximated by

f (ψ, Z ) = f (ψ, Z ). (72)

Indeed, the diffusion terms or the gradient of the stresses, linked to the second order viscous terms are
more likely to appear in low Reynolds number regions, their analytical expression would be almost
intractable for practical applications. From a purely mathematical point of view, this approximation
would be justified only for linear functions for which the second derivative term ∂2χ̄/∂!2 reduces to
zero. But second order terms are multiplied by the laminar viscosity and thus are usually important
only in some restricted regions of the flow like the near wall region. At this stage, it is worth
mentioning an important physical interpretation. Considering that the material derivative D!/Dt

includes both an advection mean value and an advection fluctuating part, there are two physical
effects in action. The mean value advection is acting when the gradient of the cell size is parallel
to the mean flow going across the interface while the fluctuating advection can be interpreted as
turbulent diffusion due to large scales motions and is mainly acting when the gradient of the cell
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size is perpendicular to a near wall boundary, the mean flow going along the interface. So, this term
does contain two physical effects.

D. Filtered Navier-Stokes equations with varying filters

The Navier-Stokes equations governing the detailed flow evolution are the starting point of the
analysis

∂u j

∂x j

= 0 (73)

and

∂ui

∂t
+

∂

∂x j

(ui u j ) = −
1

ρ

∂p

∂xi

+ ν
∂2ui

∂x j∂x j

, (74)

where in this equation, the variables ui, p, and ν denote the velocity, the pressure, and the viscous
molecular viscosity, respectively. The usual practice used in LES calculations consists in neglecting
the commutation error and consequently to solve the equation of the filtered motion36 without
correction terms. As a first approximation as shown in the preceding section, we shall account for
the commutation terms only in the material derivative. Using the functional operator (7), the equation
of mass conservation becomes

∂ ū j

∂x j

− βx j
(u j ) = 0, (75)

where βx j
is given by Eq. (8) for φ = ui. Using the functional operator (26) and expression (65), the

filtered momentum equation takes the form as

∂ ūi

∂t
+
∂
(
ūi ū j

)

∂x j

− βT (ui ) = −
1

ρ

∂ p̄

∂xi

+
1

ρ
βxi

(p) −
∂τi j

∂x j

+ ν
∂2ūi

∂x j∂x j

−ν
∂2!

∂x j∂x j

∂ ūi

∂!
− ν

∂!

∂x j

∂!

∂x j

∂2ūi

∂!2
− 2ν

∂!

∂x j

∂2ūi

∂x j∂!
, (76)

where βT(ui) is given by Eq. (22) for φ = ui leading to

βT (ui ) =
∂!

∂t

∂ ūi

∂!
+
∂!

∂x j

∂(u j ui )

∂!
=
∂!

∂t

∂ ūi

∂!
+
∂!

∂x j

[
ūi

∂ ū j

∂!
+ ū j

∂ ūi

∂!
+
∂τ (ui , u j )

∂!

]
(77)

and with

βx j
(p) =

∂!

∂x j

∂ p

∂!
, (78)

if using the approximations detailed in the Sec. III C 4, the result is

∂ ūi

∂t
+
∂(ūi ū j )

∂x j

− βT (ui ) = −
1

ρ

∂ p̄

∂xi

+ ν
∂2ūi

∂x j∂x j

−
∂τi j

∂x j

, (79)

in which we shall use the more easily tractable approximate equation

βT (ui ) ≈
∂!

∂t

∂ ūi

∂!
+ ū j

∂!

∂x j

∂ ūi

∂!
=

D!

Dt

∂ ūi

∂!
, (80)

which corresponds to the approximations introduced in Eq. (71). At this step, we recall that the aim of
the present paper is not to analyze the commutation errors in a general scope of large eddy simulations
but only to devise a practical mean to account for variable filters or meshes in computational hybrid
RANS-LES PITM simulations. With the aim to conduct the analytical developments in the following,
we will also neglect systematically the commutation error appearing in the continuity equation (75).
Indeed, strictly speaking, the filtered velocity field would not be exactly divergence free. We have
supposed that the non-commutation terms in the material derivative (80) are of primary importance
on the practical point of view for real flow simulations.
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E. Numerical estimate of extra terms arising from the non-commutativity

After having chosen the adequate form of the filtered transport equations including simplified
(or not) commutation terms, the present section deals with numerical approximations. Indeed,
Eq. (80) can be written for any quantity φ to give

βT (φ) ≈
∂!

∂t

∂φ

∂!
+ u j

∂!

∂x j

∂φ

∂!
=

D!

Dt

∂φ

∂!
. (81)

At this stage, it is necessary to introduce a numerical mean to approximate the derivatives in! such
as ∂φ/∂! appearing in the commutation terms that can be used in practice during the simulations.
To do this, we propose to apply a second filtering operation, with a larger width, like in the work of
Iovieno and Tordella.14 More precisely, whatever the variable φ,

∂φ̄

∂!
≈

˜̄φ − φ̄

!̃−!
, (82)

where ˜̄φ denotes the twice filtered variable and !̃ the width of the superfilter. In practice, !̃ = 2!.
The velocity ˜̄ui field can be obtained by applying the superfilter to the currently calculated resolved
solution at each time step of the calculation. As a result, βT is computed as

βT (ui ) ≈
D!

Dt

( ˜̄ui − ūi

!̃−!

)
. (83)

Of course, if necessary the practitioner remains free to use a more complete approximation like

βT (ui ) =
∂!

∂t

( ˜̄ui − ūi

!̃−!

)
+
∂!

∂x j

[
ū j

( ˜̄ui − ūi

!̃−!

)
+ ūi

( ˜̄u j − ū j

!̃−!

)
+

(
τ̃ (u j , ui ) − τ (u j , ui )

!̃−!

)]
.

(84)
But the calculation will be heavier. Equation (82) is directly transposable in the spectral space by
substituting ! to κc and !̃ to κ̃c = κc/2.

IV. PITM EXTENSION METHOD FOR VARIABLE FILTERS

A. Subfilter scale stress transport equation

As it was mentioned in the Introduction, the PITM method allows to perform continuous hybrid
non-zonal RANS-LES simulations with seamless coupling between RANS and LES regions. This
method is particularly relevant for simulating flows on coarse meshes or flows that depart from
the Kolmogorov equilibrium law. The main ingredient of this method is the new dissipation-rate
equation6 that constitutes the cornerstone of the modeling. This equation must be used in conjunction
with the transport equation of the subfilter scale turbulent energy in the framework of first order
closure6 or the subfilter scale stress in the framework of second moment closure7 (SMC). In this
section, we will establish the transport equation of the subfilter scale stress tensor when applying
variable filters taking into account the main part of the commutation terms. With the aim to obtain
tractable equations, some approximations will be however conceded in the computations of the
derivatives involving the turbulent processes of diffusion, production, redistribution, and destruction
terms. Only the convective term which plays a major role in the commutation errors will be treated
in its exact form. The issue to address is then to compute the transport equation for the tensor
τi j = ui u j − ūi ū j which is composed of two terms. First, the transport equation for uiuj is simply
obtained by multiplying Eq. (74) by uj and to add the transposed equation obtained by a change of
indices leading to

d(ui u j )

dt
=
∂(ui u j )

∂t
+
∂(ui u j uk)

∂xk

= −
1

ρ

(
u j

∂p

∂xi

+ ui

∂p

∂x j

)
+ ν

(
u j

∂2ui

∂xk∂xk

+ ui

∂2u j

∂xk∂xk

)
.

(85)
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Then, we can apply the functional operator (26) with φ = uiuj for computing its filtered equation

d(ui u j )

dt
=

d(ui u j )

dt
+
∂τ (uk, ui u j )

∂xk

− βT (ui u j ), (86)

where τ (uk, uiuj) is given by its definition (25) as

τ (uk, ui u j ) = ui u j uk − ui u j ūk, (87)

so that

d(ui u j )

dt
=
∂(ui u j )

∂t
+
∂(ui u j ūk)

∂xk

+
∂(ui u j uk − ui u j ūk)

∂xk

− βT (ui u j ). (88)

The filtering of Eq. (85) using Eq. (88) allows then to obtain the transport equation of the filtered
tensor ui u j that reads

∂(ui u j )

∂t
+
∂(ui u j ūk)

∂xk

− βT (ui u j ) = −
1

ρ

(

u j

∂p

∂xi

+ ui

∂p

∂x j

)

+ν

(

u j

∂2ui

∂xk∂xk

+ ui

∂2u j

∂xk∂xk

)

−
∂

∂xk

(
ui u j uk − ui u j ūk

)
. (89)

The transport equation for the quantity ūi ū j is obtained by multiplying Eq. (79) by ū j and adding
the transposed equation

∂(ūi ū j )

∂t
+
∂(ūi ū j ūk)

∂xk

− ū jβT (ui ) − ūiβT (u j ) = −
1

ρ

(
ū j

∂ p̄

∂xi

+ ūi

∂ p̄

∂x j

)

+ν

(
ū j

∂2ūi

∂xk∂xk

+ ūi

∂2ū j

∂xk∂xk

)
− ū j

∂τik

∂xk

− ūi

∂τ jk

∂xk

. (90)

The transport equation of τ ij is then obtained by subtracting Eq. (90) from Eq. (89) leading to

∂τi j

∂t
+
∂(τi j ūk)

∂xk

− βT (ui u j ) + ū jβT (ui ) + ūiβT (u j )

= −
1

ρ

(

u j

∂p

∂xi

+ ui

∂p

∂x j

− ū j

∂ p̄

∂xi

− ūi

∂ p̄

∂x j

)

+ν

(

u j

∂2ui

∂xk∂xk

+ ui

∂2u j

∂xk∂xk

− ū j

∂2ūi

∂xk∂xk

− ūi

∂2ū j

∂xk∂xk

)

−
∂

∂xk

(
ui u j uk − ui u j ūk

)
+ ū j

∂τik

∂xk

+ ūi

∂τ jk

∂xk

. (91)

Taking into account that

ui u j uk − ui u j ūk = ui u j uk − ūkτi j − ūi ū j ūk (92)

and that

u j

∂2ui

∂xk∂xk

+ ui

∂2u j

∂xk∂xk

=
∂2(ui u j )

∂xk∂xk

− 2
∂ui

∂xk

∂u j

∂xk

, (93)
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Eq. (91) can be finally rewritten in the generic form as

∂τ (ui , u j )

∂t
+

∂

∂xk

(
τ (ui , u j )ūk

)
− βT (ui u j ) + ū jβT (ui ) + ūiβT (u j )

= −
∂τ (ui , u j , uk)

∂xk

+ ν
∂2τ (ui , u j )

∂xk∂xk

−
1

ρ

∂τ (p, ui )

∂x j

−
1

ρ

∂τ (p, u j )

∂xi

+ τ

(
p,
∂ui

∂x j

+
∂u j

∂xi

)

−2ντ

(
∂ui

∂xk

,
∂u j

∂xk

)
− τ (ui , uk)

∂ ū j

∂xk

− τ (u j , uk)
∂ ūi

∂xk

, (94)

with the general definition

τ ( f, g) = f g − f̄ ḡ (95)

and

τ ( f, g, h) = f gh − f̄ τ (g, h) − ḡτ (h, f ) − h̄τ ( f, g) − f̄ ḡh̄, (96)

for any turbulent quantities f, g, h. As a result of interest, one can see that Eq. (94) takes the same
form as Eq. (22) in Ref. 38 written in term of general moments38, 39 apart from the additional terms
βT(uiuj), ūiβT (ui ), and ū jβT (u j ) appearing in the left hand side of this equation arising from the
commutation errors involved in the convective process. The commutation term can be developed
using Eq. (22) for evaluating βT as follows:

βT (ui u j ) − ū jβT (ui ) − ūiβT (u j ) =
∂!

∂t

∂(ui u j )

∂!
+
∂!

∂xk

∂(ukui u j )

∂!

−ū j

[
∂!

∂t

∂ ūi

∂!
+
∂!

∂xk

∂(ukui )

∂!

]
− ūi

[
∂!

∂t

∂ ū j

∂!
+
∂!

∂xk

∂(uku j )

∂!

]
, (97)

which can be rewritten as

βT (ui u j ) − ū jβT (ui ) − ūiβT (u j ) =
∂!

∂t

∂τ (ui , u j )

∂!
+
∂!

∂xk

[
∂(ukui u j )

∂!
− ū j

∂(ukui )

∂!
− ūi

∂(uku j )

∂!

]
.

(98)

The simplified and more tractable form of these equations can be derived easily, using Eq. (96), as
detailed in the following. We need first to rewrite Eq. (98) in a more practical form considering the
correlation tensor τ (ui, uj, uk) instead of ui u j uk . Using the relation defined in Eq. (96) taken for ui,
uj, and uk as

τ (ui , u j , uk) = ui u j uk − ūiτ (u j , uk) − ū jτ (ui , uk) − ūkτ (ui , u j ) − ūi ū j ūk, (99)

one can easily find that Eq. (98) transforms into

βT (ui u j ) − ū jβT (ui ) − ūiβT (u j ) =
∂!

∂t

∂τ (ui , u j )

∂!
+
∂!

∂xk

[∂τ (ui , u j , uk)

∂!

+τ (u j , uk)
∂ ūi

∂!
+ τ (ui , uk)

∂ ū j

∂!
+ τ (ui , u j )

∂ ūk

∂!
+ ūk

∂τ (ui , u j )

∂!
− ūi ū j

∂ ūk

∂!

]
. (100)

This equation is of very complex form. In the first approximation, we will retain only the convective
term associated with the spatial derivative ∂!/∂xk. In this case, βT (ui u j ) − ū jβT (ui ) + ūiβT (u j )
takes the simple form as follows:

βT (ui u j ) − ū jβT (ui ) − ūiβT (u j ) ≈

(
∂(ui u j )

∂!
− ū j

∂ ūi

∂!
− ūi

∂ ū j

∂!

)
D!

Dt
=
∂τ (ui , u j )

∂!

D!

Dt
.

(101)
The subfilter turbulent energy is obtained by the tensor contraction of the subfilter scale stress tensor
τ (ui, uj) as
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ks f s =
1

2
τ (u j u j ), (102)

∂ks f s

∂t
+

∂

∂xk

(
ks f s ūk

)
−

1

2
βT (ui ui ) + ūiβT (ui )

= −
1

2

∂τ (ui , ui , uk)

∂xk

+ ν
∂2ks f s

∂xk∂xk

− ντ

(
∂ui

∂xk

,
∂ui

∂xk

)
− τ (ui , uk)

∂ ūi

∂xk

, (103)

with also for the turbulence energy commutation terms

1

2
βT (ui ui ) − ūiβT (ui ) =

∂!

∂t

∂ks f s

∂!
+
∂!

∂xk

[
∂(ukui ui )

∂!
− ūi

∂(ukui )

∂!

]
. (104)

The simplified and more tractable form of the equation can be obtained as previously,

1

2
βT (ui ui ) − ūiβT (ui ) ≈

∂ks f s

∂!

D!

Dt
(105)

equation which is nothing more than the tensorial contraction of Eq. (101). The approximations
(101) and (105) have the advantage to remain in perfect correspondence and physical interpretation
with the statistical equations with variable splitting.

B. Practical numerical estimate of extra-terms in subfilter turbulence equations

We again consider the numerical approximation of derivatives in! appearing in the commutation
terms of the turbulence equations. According to the developments made in Sec. III E referring to
Eq. (82), the use of a superfilter allows to approximate the commutation term βT (ui u j ) − ū jβT (ui ) +

ūiβT (u j ) defined in Eq. (98) which is computed using a superfilter as

βT (ui u j ) − ū jβT (ui ) − ūiβT (u j ) =
D!

Dt

(
τ̃ (ui , u j ) − τ (ui , u j )

!̃−!

)
(106)

and for the turbulence energy, like for Eq. (106)

1

2
βT (ui ui ) − ūiβT (ui ) =

D!

Dt

(
k̃s f s − ks f s

!̃−!

)
. (107)

These estimates are consistent with the approximations used in the momentum equation. Physically,
the amount of energy gain or lost in the resolved scales due to filter width variation is, respectively,
exactly compensated by an energy lost or gain in the subfilter turbulence equations.

C. Subfilter scale dissipation-rate transport equation

The derivation of the dissipation rate equation is the core of the PITM method. It has been
fully described for the first time in Ref. 6 using a partial integration procedure applied to the energy
equation in the spectral space involving the wave number ranges [0, κc], [κc, κd], and [κd, ∞[
where κc is the cutoff wave number whereas κd is a very large wave number located just before
the dissipation range of the energy spectrum. The same concept has been afterward introduced in
Refs. 7, 40, and 41 for stress transport modeling. As a result of the modeling developed first in
homogeneous flows in the statistical sense and then extended to non-homogeneous flows using the
concept of tangent homogeneous field,36 the dissipation rate equation reads

∂εs f s

∂t
= cs f sε1

εs f s

ks f s

P − cs f sε2

ε2
s f s

ks f s

, (108)

where cs f sε1
= 3/2 and

cs f sε2
=

〈
ks f s

〉

κd E(κd )

[
F(κd ) − F(κd )〈

εs f s

〉
]

. (109)
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In Eq. (108), P denotes the production term of the subfilter turbulent energy given by

P = −τ (ui , uk)
∂ ū j

∂xk

, (110)

while in Eq. (109), F(κd ) is the spectral transfer at this location and F(κd) is the gross flux at the
splitting wave number defined by

F(κd ) = F(κd ) + E(κd )
∂κd

∂t
. (111)

Further analytical developments made in Ref. 41 have shown then that the coefficient cs f sε1
appearing

in the production term is not necessary equal to 3/2 but can take on its corresponding RANS value
cs f sε1

= cε1
whatever the value used in the statistical dissipation-rate equation. The derivation of

the method was originally carried out for constant or slow varying filter cutoff κc. Although this
hypothesis was not formally used in the mathematical development, unless to assume that κc still
remains much lower than the dissipative wave number κd which evolves itself in time and space,
nothing has to be changed when the cutoff wave number varies rapidly. This assertion can be
intuitively understood. In the case where κc is strongly varying in time and space, the flux F(κc) will
be modified due to the splitting variation according to equation

F(κc) = F(κc) + E(κc)
∂κc

∂t
(112)

showing that a part of the energy fed into the modeled range is due to the variation in splitting wave
number. But the spectrum itself does not change at all, just the splitting is changing, so that there is
no reason for the dissipation rate to be modified. From a physical point of view, this outcome simply
means that the dissipation-rate ε indeed interpreted as the energy flux F(κd) passing through the
dissipative wave number κd remains unaffected by the location of the cutoff wave number κc = π /!.
Indeed, we know that the PITM method is fully consistent with the concept of inertial cascade.6

From a practical point of view, Eq. (108) needs to be closed. Further developments have shown that
the coefficient cs f sε2

is a linear function of the ratio of the subfilter energy to the total energy ksfs/k
as follows:6, 7

cεs f s2
= cε1

+

〈
ks f s

〉

k

(
cε2

−
3

2

)
, (113)

whatever the cε1
and cε2

values used in RANS modeling.41 The ratio <ksfs> /k is evaluated as a
function of the dimensionless parameter ηc

ηc = κc Le =
π Le

!
(114)

involving the cutoff wave number κc and the turbulent length scale Le

Le =
k3/2

〈
εs f s

〉
+ 〈ε<〉

, (115)

built using the total turbulent kinetic energy k and the total dissipation composed of the subfilter
dissipation rate εsfs given by its transport equation and the large scale dissipation rate denoted ε<

calculated explicitly by

ε< = ν
∂u<

i

∂x j

∂u<
i

∂x j

. (116)

In Eq. (114), the quantity ! is the effective filter accounting for the anisotropy of the grid near the
walls like the proposal of Scotti42

! = !a

(
ζ + (1 − ζ )

!b

!a

)
, (117)

where the filters !a and !b are defined by !a = (!1!2!3)1/3 and !b = (!2
1 +!2

2 +!2
3)/3)1/2

and where ζ is a constant parameter. Note that in PITM methodology, the model varies continuously
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with respect to the ratio of the turbulent length-scale to the grid-size Le/!. If we have inferred that
no modification is necessary in the dissipation rate equation for variable filters, it can be pointed out,
however, that the production term itself defined in Eq. (110) will be indirectly modified.

V. PITM METHOD WITH VARIABLE FILTERS IN PRACTICE

The purpose of this section is to provide for practitioners in CFD the practical recapitulate of
the subfilter scale models which need to be used when variable filters are taken into account in the
equations governing turbulent flows.

A. Navier-Stokes equations

Using the approximations developed above, the mass conservation equation (75) and the resolved
scale equation of motion (79) to be solved are finally for the mass conservation

∂ ū j

∂x j

+
∂!

∂x j

∂ ū j

∂!
= 0, (118)

and using the functional operator (26), for the filtered momentum equation

∂ ūi

∂t
+
∂(ūi ū j )

∂x j

=
∂!

∂t

∂ ūi

∂!
+
∂!

∂x j

∂(ūi ū j )

∂!
−

1

ρ

∂ p̄

∂xi

+ ν
∂2ūi

∂x j∂x j

−
∂τi j

∂x j

, (119)

but the approximate form of this equation is retained in practices as follows:

∂ ūi

∂t
+
∂(ūi ū j )

∂x j

=
∂ ūi

∂!

D!

Dt
−

1

ρ

∂ p̄

∂xi

+ ν
∂2ūi

∂x j∂x j

−
∂τi j

∂x j

, (120)

with

∂ ūi

∂!
≈
˜̄ui − ūi

!̃−!
. (121)

B. Subfilter scale viscosity models

In the case of subfilter scale viscosity models, the subfilter-scale stress energy τ ij appearing in
the left-hand side of Eq. (120) is modeled by means of the Boussinesq hypothesis, nonlinear model
or even algebraic stress model taking into account an eddy viscosity. The Boussinesq hypothesis
leads to the well known relation

τi j = −νs f s

(
∂ ūi

∂x j

+
∂ ū j

∂xi

)
+

2

3
ks f sδi j , (122)

where the eddy viscosity νsfs reads6

νs f s = cµ

k2
s f s

εs f s

(123)

and where cµ is a constant coefficient. In Eq. (122), the subfilter scale turbulent energy and
dissipation-rate are computed by their own transport equations (103) and (108), modeled, respec-
tively, as

∂ks f s

∂t
+

∂

∂xk

(
ks f s ūk

)
= P +

D!

Dt

∂ks f s

∂!
− εs f s + J (124)

and

∂εs f s

∂t
+

∂

∂xk

(
εs f s ūk

)
= cs f sε1

εs f s

ks f s

[
P +

D!

Dt

∂ks f s

∂!

]
− cs f sε2

ε2
s f s

ks f s

+ Jε, (125)
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and where the turbulence diffusion terms J and Jε have been embedded into these equations in the
general case of inhomogeneous flows. These terms are modeled using a gradient law hypothesis

J =
∂

∂x j

[(
ν +

νs f s

σk

)
∂ks f s

∂x j

]
(126)

and

Jε =
∂

∂x j

[(
ν +

νs f s

σε

)
∂εs f s

∂x j

]
, (127)

where σ k and σ ε are constant coefficients. In low Reynolds number flows, additional correction
terms may also appear in Eq. (125), but they are not detailed here. Note that the commutation term
arising from the convective term of the subfilter turbulent energy appearing in Eq. (124) has been
included in Eq. (125) as an additional production term. This practice becomes obvious if one refers
to the technique of derivation of the dissipation rate equation in the PITM method that makes use of
the kinetic energy equation (see Eqs. (10) and (11) on p. 448 of Ref. 6). This technique allows for
instance to keep a time scale equation in a homogeneous turbulence field that takes the form

∂

∂t

(
ks f s

εs f s

)
=
εs f s

k2
s f s

[(
P +

D!

Dt

∂ks f s

∂!

)
(cs f sε1

− 1) − ε(cs f sε2
− 1)

]
(128)

and so, the usual equilibrium value for the ratio of the production P including the additional filtering
term to the dissipation

1

ε

(
P +

D!

Dt

∂ks f s

∂!

)
→

cs f sε2
− 1

cs f sε1
− 1

(129)

is thus preserved.

C. Subfilter scale stress models

In the second moment closure (SMC), the subfilter scale stress transport equation deduced from
Eq. (94) is directly derived as

∂τi j

∂t
+

∂

∂xk

(
τi j ūk

)
= Pi j +

D!

Dt

∂τi j

∂!
++i j −

2

3
δi jεs f s + Ji j . (130)

In this equation, the production term Pij takes on the exact expression

Pi j = −τik

∂ ū j

∂xk

− τ jk

∂ ūi

∂xk

. (131)

The redistribution term+ij is usually decomposed into a slow part+1
i j which characterizes the return

to isotropy due to the action of turbulence on itself and a rapid part +2
i j which describes the return

to isotropy by action of the filtered velocity gradient. These terms can be modeled for instance as
made in Refs. 7 and 43

+1
i j = −cs f s1

εs f s

ks f s

(
τi j −

2

3
ks f s δi j

)
. (132)

In Eq. (132), c1 is the Rotta coefficient modified to account for the spectrum splitting.43 The second
term +2

i j can be modeled by means of the rapid distortion theory (RDT) for homogeneous strained
turbulence in an initially isotropic state7, 44

+2
i j = −c2

(
Pi j −

1

3
Pmmδi j

)
, (133)

where the coefficient c2 remains the same as in statistical modeling. The diffusion term Jij appearing
in Eq. (130) associated with the fluctuating velocities and pressure together with the molecular
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diffusion is modeled assuming a well known gradient law hypothesis

Ji j =
∂

∂xk

(
ν
∂τi j

∂xk

+ cs

ks f s

εs f s

τkl

∂τi j

∂xl

)
, (134)

where cs is a constant numerical coefficient. The subfilter scale dissipation-rate εsfs appearing in
Eq. (130) is still computed from its modeled transport equation (125) but the diffusion term involves
now a tensorial eddy viscosity concept as follows:

Jε =
∂

∂x j

(
ν
∂εs f s

∂x j

+ cε
ks f s

εs f s

τ jm

∂εs f s

∂xm

)
, (135)

where the coefficient cε remains constant. The coefficients used in these energy and stress subfilter
models can be found in Refs. 6, 43, 45, and 46. In this section, all the additional commutation terms
have been expressed using the filter !. Of course, it is also possible to introduce the cutoff wave
number κc in place of ! in the modeled transport equations (127), (128), and (130). However,
considering that the variation of the subfilter scale stress τ ij as a function of κc is very probably
nonlinear, it may be worth considering the option of an improved approximation deduced from the
energy spectrum as shown in Subsection A 5 of the Appendix. The impact of these correction terms
in practical calculations can be discussed with the following remark in mind. The commutation
terms approximations such as

C =
D!

Dt

∂φ

∂!
(136)

appearing in Eqs. (124), (125), and (130) can be written as

C =

(
∂!

∂t
+ ū j

∂!

∂x j

)
∂φ

∂!
=
∂!

∂t

∂φ

∂!
+
〈
u j

〉 ∂!
∂x j

∂φ

∂!
+ u<

j

∂!

∂x j

∂φ

∂!
. (137)

As a result, it is of interest to note that the first term in the right hand side of Eq. (137) acts in time
varying flows, the second term acts in space when the filter size varies in the direction of the mean
flow (crossing the interface) while the third term can act also when the filter size is varying in both
directions, mean flow and perpendicular to the mean flow (flowing along the interface). The second
term can be said to refer to the material derivative or a convection process whereas the third term
can be said to refer to turbulent large scale turbulent diffusion, i.e., the diffusion due to the resolved
scales.

VI. DECAY OF HOMOGENEOUS ISOTROPIC TURBULENCE

A. Generation of isotropic turbulence with an imposed spectrum energy
subfilter scale stress models

With the aim to illustrate the theoretical development of the effect of varying filter width in
time and space on the governing equations of mass, momentum, and turbulence model, and to show
the usefulness of the proposed approach, we will perform here numerical simulations of isotropic
decaying turbulence. This test case is indeed particularly appropriate for studying turbulence models
in their capacity to mimic the Kolmogorov cascade process including the transfer of energy from
the large scales to the small scale as well as the dissipation of the small scales by the molecular
viscosity. For this application, we use the numerical code developed by Chaouat47, 48 based on the
finite volume technique including a Runge-Kutta scheme of fourth-order accuracy in time with a
combination of a quasi-centered scheme of fourth-order accuracy in space which has shown good
numerical properties.48 The initial mean velocity is zero and an analytical homogeneous random
field43, 49 has been generated in a cubic box of size L = N! as initial condition with a given energy
spectrum verifying

〈ûi (κ)ûi (−κ)〉 =

(
2π

L

)3
E(κ)

2πκ2
, (138)
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where ûi (κ) denotes the Fourier transform of the instantaneous velocity. The wave-numbers are
defined by κ = 2π [m, n, p]T /L , where m, n, p are integers that vary from −N/2 + 1 to N/2 leading
to a minimum wave-number κmin = 2π /(N!) and a maximum wave-number κmax = π /!. The
energy spectrum is defined by

E(κ) = ακm f or κ ≤ κ0,

E(κ) = Cκ ε
2/3 κ−5/3 f or κ ≥ κ0, (139)

where Cκ is the Kolmogorov constant. The maximum of the spectrum is obtained for κ0 which is
defined by the continuity of the two functions in Eq. (139)

κ0 =

(
Cκε

2/3

α

) 3
3m+5

. (140)

The subfilter and resolved parts of the turbulent energy are determined by integration of the spectrum.
For the usual case where the cutoff wave number κc is located in the inertial zone of the spectrum
implying κc > κ0, the subfilter energy is then given by

〈
ks f s

〉
=

∫ ∞

κc

E(κ) dκ =
3

2
Cκε

2/3κ−2/3
c , (141)

whereas the total energy is

k =

∫ ∞

0

E(κ) dκ =
3m + 5

2(m + 1)
Cκε

2/3κ
−2/3
0 =

3m + 5

2(m + 1)
α

2
3m+5 C

3(m+1)
3m+5
κ ε

2(m+1)
3m+5 (142)

leading to the ratio of the subfilter energy to the total energy
〈
ks f s

〉

k
=

3(m + 1)

3m + 5

(
κ0

κc

)2/3

. (143)

The simulations are performed on the same mesh of dimension L = 1.25 m accounting N = 803

grid points for a medium cutoff wave number κc = 2 cm−1. The equation describing the law of the
dissipation-rate decay can be easily derived by taking the derivative of Eq. (142)

dk

k
=

(
2m + 2

3m + 5

)
dε

ε
(144)

and by considering the equation of the total turbulent energy decay,

dk

dt
= −ε, (145)

one can finally get the resulting equation

dε

dt
= −

(
3m + 5

2m + 2

)
ε2

k
= −cε2

ε2

k
. (146)

For the particular value m = 1.4, the present limiting value lim ηc→0 cs f sε2
(ηc) = cε2

≈ 1.9 is
recovered.6, 37 These decay laws are supposing that the shape of the energy spectrum (139) remains
unchanged during decay, this is not absolutely true so that the resulting Eq. (146) is only approximate.
In the application considered here, the turbulent Reynolds number Rt = k2/νε based on the turbulent
energy and the dissipation-rate is about 5000. For this case, the ratio value of the subfilter energy to
the total energy is roughly 0.20 implying an appreciable part of subfilter turbulence energy.

B. Fixed grid

The equations to be solved are a particular case of the model given in the Sec. V B. Indeed it is
not necessary to deal with stress transport equations in the present application for isotropic decaying
turbulence. As usually, the filtered mass and motion equations to be solved are

∂ ū j

∂x j

= 0, (147)
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∂ ūi

∂t
+
∂(ūi ū j )

∂x j

= −
1

ρ

∂ p̄

∂xi

+ ν
∂2ūi

∂x j∂x j

−
∂τi j

∂x j

. (148)

The subfilter stress τ ij appearing in Eq. (148) is solved assuming a viscosity model defined in
Eq. (123) where the subfilter scale and energy are solutions of the transport equations as follows:

∂ks f s

∂t
+

∂

∂xk

(
ks f s ūk

)
= P − εs f s +

∂

∂x j

[(
ν +

νs f s

σk

)
∂ks f s

∂x j

]
(149)

and

∂εs f s

∂t
+

∂

∂xk

(
εs f s ūk

)
= cs f sε1

εs f s

ks f s

P − cs f sε2

ε2
s f s

ks f s

+
∂

∂x j

[(
ν +

νs f s

σε

)
∂εs f s

∂x j

]
, (150)

with

P = −τi j

∂ ūi

∂x j

. (151)

C. Expanding grid without correction terms

The expanding grid is introduced by using a variable change. The inertial reference coordinate
system xj is replaced by a moving coordinate system ξ j such that ξ (t, x) = A(t)x given by the
transformation

{
ϑ = t

ξ j = A(t)x j
, (152)

with for derivatives





∂

∂t
=
∂

∂ϑ

∂ϑ

∂t
+
∂

∂ξ j

∂ξ j

∂t
=
∂

∂ϑ
+

ξ j

A(t)

d A(t)

dt

∂

∂ξ j

∂

∂x j

=
∂

∂ξ j

∂ξ j

∂x j

= A(t)
∂

∂ξ j

. (153)

This transformation is in fact a particular case of the Rogallo time-dependent linear transformation50

which was used in numerical experiments on the structure of homogeneous turbulence performed by
Lee and Reynolds.51 Using the change of variables (152) with the derivative (153), the momentum
equation then transforms as

∂ ūi

∂ϑ
+

ξ j

A(ϑ)

d A(ϑ)

dϑ

∂ ūi

∂ξ j

+ A(ϑ)
∂(ūi ū j )

∂ξ j

= −
A(ϑ)

ρ

∂ p̄

∂ξi

+ A2(ϑ)ν
∂2ūi

∂ξ j∂ξ j

− A(ϑ)
∂τi j

∂ξ j

, (154)

whereas the continuity equation reads

∂ ū j

∂ξ j

= 0. (155)

Considering the vector Vi (ξ ,ϑ) defined as

Vi (ξ ,ϑ) =
d

dϑ

(
ξi

A(ϑ)

)
= −

ξi

A2(ϑ)

d A(ϑ)

dϑ
, (156)

which can be interpreted as the local mesh velocity, Eq. (154) then can be rewritten into the compact
form as

∂ ūi

∂ϑ
+ A(ϑ)

∂(ūi ū j )

∂ξ j

− Vj A(ϑ)
∂ ūi

∂ξ j

= −
A(ϑ)

ρ

∂ p̄

∂ξi

+ A2(ϑ)ν
∂2ūi

∂ξ j∂ξ j

− A(ϑ)
∂τi j

∂ξ j

. (157)

Using the same procedure, the subfilter turbulent energy equation becomes

∂ks f s

∂ϑ
+ A(ϑ)

∂

∂ξk

(
ks f s ūk

)
− Vk A(ϑ)

∂ks f s

∂ξk

= P − εs f s + A2(ϑ)
∂

∂ξ j

[(
ν +

νs f s

σk

)
∂ks f s

∂ξ j

]
,

(158)
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where

P = −A(ϑ)τi j

∂ ūi

∂ξ j

, (159)

τi j = −A(ϑ)νs f s

(
∂ ū j

∂ξ j

+
∂ ūi

∂ξ j

)
+

2

3
ks f sδi j , (160)

and the subfilter scale dissipation rate reads

∂εs f s

∂ϑ
+ A(ϑ)

∂

∂ξk

(
εs f s ūk

)
−Vk A(ϑ)

∂εs f s

∂ξk

= cs f sε1

εs f s P

ks f s

−cs f sε2

ε2
s f s

ks f s

+ A2(ϑ)
∂

∂ξ j

[(
ν+

νs f s

σε

)
∂εs f s

∂ξ j

]
.

(161)

D. Expanding grid with correction terms

In the present section, the new correction terms due to noncommutativity are accounted for,
as appearing in Eqs. (120), (124), and (125). These terms are involving the derivatives of the filter
width !. In the general case it would be necessary to use the change of variables (152) with the
derivatives (153) to calculate the material derivative of !, so that the expression would be

D!

Dt
=
∂!

∂t
+ ūk

∂!

∂xk

=
∂!

∂ϑ
+

ξk

A(ϑ)

d A(ϑ)

dϑ

∂!

∂ξk

+ ūk A(ϑ)
∂!

∂ξk

=
∂!

∂ϑ
+ A(ϑ) (ūk − Vk)

∂!

∂ξk

.

(162)

However, in the present application, the change of variables (152) is much simpler because the filter
width ! is uniform in space and is only a function of time implying that

D!

Dt
=
∂!

∂t
≡
∂!

∂ϑ
. (163)

As a result, the continuity equation (155) remains unchanged whereas the momentum equation (157)
becomes

∂ ūi

∂ϑ
+ A(ϑ)

∂(ūi ū j )

∂ξ j

− Vj A(ϑ)
∂ ūi

∂ξ j

=
∂!

∂ϑ

∂ ūi

∂!

−
A(ϑ)

ρ

∂ p̄

∂ξi

+ A2(ϑ)ν
∂2ūi

∂ξ j∂ξ j

− A(ϑ)
∂τi j

∂ξ j

, (164)

with this time

∂ ū j

∂ξ j

+ A(ϑ)
∂!

∂ξ j

∂ ū j

∂!
= 0 (165)

but the commutation term appearing in Eq. (165) vanishes here because of the use of a uniform grid.
The subfilter turbulent energy equation (158) including the corrective terms reads

∂ks f s

∂ϑ
+ A(ϑ)

∂

∂ξk

(
ks f s ūk

)
− Vk A(ϑ)

∂ks f s

∂ξk
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−εs f s + A2(ϑ)
∂

∂ξ j

[(
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νs f s

σk

)
∂ks f s

∂ξ j

]
(166)

and the subfilter scale dissipation rate equation (161) becomes

∂εs f s
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+ A(ϑ)

∂

∂ξk

(
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)
− Vk A(ϑ)
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∂
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νs f s

σε

)
∂εs f s
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]
, (167)
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with the approximations

∂ ūi

∂!
≈
˜̄ui − ūi

!̃−!
(168)

and

∂ks f s

∂!
≈

k̃s f s − ks f s

!̃−!

∂εs f s

∂!
≈
ε̃s f s − εs f s

!̃−!
(169)

using a superfilter such that !̃ = 2!, as introduced in Sec. III E and applied on the current turbulence
field.

E. Conditions of computation

In the present case, the simulations are performed on a Cartesian mesh with a grid spacing which
is uniform and isotropic in the three directions of space. The computational mesh in the physical
space (x, t) is not fixed but it is expanding so that the step size !(8) associated with the cell 8
is given by !(8) = (δx1(8)δx2(8)δx3(8))

1/3 increases in time in order to account for the increase of
turbulence scales during decay. The grid size 9(8) in the transformed space (ξ ,ϑ) is constant in
space and time and is computed as 9(8) = (δξ 1(8)δξ 2(8)δξ 3(8))

1/3 so that

9(8) = A(ϑ)!(8)(ϑ), (170)

in which 9(8) is constant while !(8) increases in time. Obviously

∂9(8)

∂ϑ
= 0 and

∂9(8)

∂ξk

= 0 (171)

but

∂!(8)

∂ϑ
=
∂

∂ϑ

(
9(8)

A(ϑ)

)
= −

d A(ϑ)

A2(ϑ)dϑ
9(8) and

∂!(8)

∂ξk

= 0. (172)

The variable change allows to consider a constant grid size 9(8) in a transformed variable
coordinate system (ξ ,ϑ) in place of a variable grid size !(8)(ϑ) in a constant coordinate system
(x, t) as illustrated in Figure 1. Solving Eqs. (145) and (146) leads to the evolution of the turbulent
energy given by

k(t) = k0

(
1 +

ε0t

nk0

)−n

(173)

and the dissipation-rate

ε(t) = ε0

(
1 +

ε0t

nk0

)−(n+1)

, (174)

where according to Eq. (144)

n =
1

cε2
− 1

=
2m + 2

m + 3
, (175)

and where k0 and ε0 denote the turbulent energy and the dissipation-rate at the initial time, respec-
tively. Considering that the dissipation process of the small scales by the molecular viscosity implies
a global increase of the characteristic turbulence scales in time, it is desirable to increase the step
size accordingly. From Eqs. (173) and (174), one can recover the characteristic scale L evolution law

L(t) =
k3/2(t)

ε(t)
= L0

(
1 +

ε0t

nk0

)1−n/2

, (176)

where L0 = k
3/2
0 /ε0 is the characteristic scale at the initial time. Consequently, with the aim to

conform to the decaying spectrum evolution during the computation, we simply suggest to use the
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FIG. 1. Sketch of the expanding discretization grid and attached coordinate system (the numerical values are arbitrary).

function A(t) in the form

A(t) = (1 + αt)−p (177)

in which α and p are numerical constants chosen to approximately reproduce the scale evolution of
the turbulence field, implying that

1

A(t)

d A(t)

dt
= −

αp

1 + αt
. (178)

For t = 0, at the initial state, A(t = 0) = 1, so that !(8)(ϑ = 0) = 9(8).
As a result of interest, one can remark that during the decay, as t = ϑ , 0 < A(ϑ) < 1, and

dA/dϑ(ϑ) < 0 so that the sign of Vi (ξ ,ϑ) appearing in the most general transport equations (164),
(166), and (167) is the same as the one of xi(8), and can be physically interpreted as the expansion
velocity in physical space of the computational grid as indicated by Eq. (156). We note also that
Vi (ξ ,ϑ) is not divergence free. From Eqs. (156) and (172), one finds indeed

divξ (V ) =
∂Vj (ξ ,ϑ)

∂ξ j

= −
3

A2(ϑ)

d A(ϑ)

dϑ
=

3

9(8)

d!(8)(ϑ)

dϑ
. (179)

The numerical discretization of the above equations is made in the (ξ ,ϑ) space-time as specified
in the Secs. VI C and VI D. During the numerical simulation the value of A(ϑ) = (1 + αϑ)−p is
obtained directly from Eq. (177) while the material derivative is simply given by

D!(8)

Dt
≡

d!(8)

dϑ
= αp(1 + αϑ)p−19(8). (180)

(We recall that ϑ ≡ t for functions of a single variable.) From Eq. (176), we get

L

L0

=

(
1 +

ε0ϑ

nk0

)1−n/2

. (181)

Comparing with the equation for the grid step evolution,

!(8)(ϑ)

!(8)(0)
=

A(0)

A(ϑ)
= (1 + αϑ)p, (182)
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one gets the value for the numerical constants

p =
2 − n

2
=

2

m + 3
and α =

ε0

nk0

=

(
m + 3

2m + 2

)
ε0

k0

. (183)

F. Finite volume method

The numerical code47, 48 used for the simulations of the decaying turbulence is based on the
finite volume technique. In this section, we briefly show that the transformed transport equations
(164), (166), and (167) can be rewritten in a similar form as for fixed grid but considering however
the relative velocity computed as the difference between the filtered flow velocity and the mesh
velocity defined in Eq. (156). Let us consider Eq. (164). The first step consists in multiplying this
equation by A−3(ϑ), and to rearrange the terms appearing in the left hand-side in the following way:

A−3 ∂ ūi

∂ϑ
=
∂

∂ϑ
(A−3ūi ) − ūi

∂

∂ϑ
(A−3) =

∂

∂ϑ
(A−3ūi ) + 3ūi A−4 ∂A

∂ϑ
, (184)

A−2 ∂

∂ξ j

(ūi ū j ) =
∂

∂ξ j

(A−2ūi ū j ) − ūi ū j

∂

∂ξ j

(A−2), (185)

− A−2Vj

∂ ūi

∂ξ j

= −
∂

∂ξ j

(A−2Vj ūi ) + A−2ūi

∂Vj

∂ξ j

= −
∂

∂ξ j

(A−2Vj ūi ) + 3ūi A−4 ∂A

∂ϑ
. (186)

Using Eqs. (184), (185), and (186), as well as Eq. (170) for the filter width !(8)(ϑ), Eq. (164) then
becomes

∂
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)
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∂ ūi

∂!

+!3
(8)

(
−

A(ϑ)

ρ

∂ p̄

∂ξi

+ A2(ϑ)ν
∂2ūi
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)
(187)

or equivalently,

δ
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(
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)
+!3

(8)
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(
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∂2ūi

∂x j∂x j

−
∂τi j

∂x j

)
. (188)

After integration on the control volume !3
(8), one finally gets the discretized equation written in

term of finite volume

δ

δt

(
!3

(8)ūi(8)

)
+
∑

σ(8)

[
ūi (ū j − Vj )n j + p̄ni

]
Sσ =

∑

σ(8)

(2νSi j − τi j )n j Sσ

+!3
(8)

δ!(8)

δt

δūi(8)

δ!(8)

, (189)

where ūi(8)
is the mean averaged velocity on the cell, n is the unit vector normal to the surface Sσ

surrounding the cell8 and Sij denotes the strain rate tensor. This resulting equation written on moving
grids is of the Arbitrary Eulerian Lagrangian (ALE) formulation.52, 53 As expected, the velocity vector
in the convective term is the relative velocity u − V . The transport equations (166) and (167) are
treated in the same way leading to the corresponding discretized equations obtained with the finite
volume technique as follows:

δ

δt

(
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(8)ks f s(8)

)
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∑

σ(8)

[
ks f s(ū j − Vj )n j
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∑
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+!3
(8)

(
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δ!(8)

δt

δks f s(8)
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− εs f s(8)

)
(190)
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and
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− cs f sε2
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s f s(8)

ks f s(8)

]

, (191)

where jk j
and jε j

are related to the turbulent diffusion processes.

G. Numerical results

Figure 2 displays the decay of the three-dimensional spectra starting from the initial time for the
PITM simulations performed both on the fixed and moving meshes at different time advancements,
denoted PITM1 and PITM2, respectively. The simulation performed on the moving mesh (PITM2)
consists in solving the filtered transport equations written in the ALE formulation including here the
commutation terms (equations of Sec. VI D). As an expected result, one can see that all simulations
are able to reproduce the evolutions of the spectrum at different times in accordance with the
Kolmogorov law. One can see that the inertial transfer zone for the energy cascade computed
initially at the chosen Reynolds number Re ≈ 5000 is well visible. As expected also, the PITM2
performed on the moving mesh allows a better description of the energetic region of the spectrum
than the PITM1 simulation, especially in the productive zone at low wave numbers. This is because
of the dynamic conforming of the discretization points to the varying spectrum. In particular, the
distribution of the turbulent energy associated with the PITM2 is more accurately described in the
lower κ wave numbers region because of the increase of the turbulence length-scale which evolves
in time according to the law given by Eq. (181). The maxima of the spectrum E(κ) as well as the
differences E(κ2) − E(κ1) for the PITM2 and PITM1 simulations are listed in Table I at different
times t = t1, t2, t3. The index 2 pertains to the moving mesh simulation while index 1 pertains to the
fixed mesh simulation. As a result, one can see that the difference of the maximum of the spectrum
δE = E(κ2) − E(κ1) between the case with coarsened grid and fixed grid increases whereas the
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FIG. 2. PITM simulations of the homogeneous decay of the energy spectra at different time advancement t = t1, t2, t3
performed on fixed and moving meshes (κc = 2 cm−1). Initial spectrum given by Eq. (139): —!—. PITM1 (fixed mesh): t1:

blue, . . . • . . . , t2: red, −− • −− , and t3: orange, —•—. PITM2 (moving mesh, equations with commutation terms): t1:

green, · · · " · · · , t2: maroon, −− " −− , and t3: cyan, — " —.
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TABLE I. Maximum of the spectrum at different time advancement for the PITM simulations performed on the fixed and

moving meshes including the computation of the commutation terms.

E(κ2) (cm3/s2) E(κ1) κ2 (cm−1) κ1 δE (cm3/s2) δκ (cm−1)

t1 2131 1849 0.164 0.250 282 −0.0861

t2 2161 1002 0.140 0.200 1159 −0.0600

t3 2245 863 0.127 0.150 1382 −0.0231

difference of the wave numbers δκ = κ2 − κ1 decreases. These results concerning the evolution of the
spectra E(κ2) and E(κ1) can be explained if one considers that the large scale energy decreases more
slowly than the small scale energy and indeed, the larger the eddies, the longer is their time scale. Big
eddies are more permanent and this is recovered in the moving mesh calculation which is conforming
to spectrum evolution. On the contrary, in the fixed grid calculation, the big eddies are decaying too
much because the calculation box becomes too small, and this is rather unphysical. In complement
to Figure 2, the new Figure 3 now displays the decay of the three-dimensional spectra, for both
PITM simulations performed on the moving meshes but with and without the commutation terms
appearing in the LES equations, denoted PITM2 (equations of Sec. VI D) and PITM3 (equations
of Sec. VI C), respectively. When comparing globally the results between these two simulations,
one can see that the curves associated with the PITM2 present a more regular evolution than the
one associated with the PITM3, especially at low wave number. At high wave numbers, the curves
associated with the PITM2 and PITM3 present subtle differences. Indeed, the PITM2 curves are
slightly more dissipative than the PITM3 curves which are located slightly above the corresponding
PITM2 spectrum. Reasoning on the turbulence kinetic energy, this can be explained physically by
the fact that for the PITM3, the term

∫ t

0

E(κc)
∂κc

∂t
dt, (192)
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FIG. 3. PITM simulations of the homogeneous decay of the energy spectra at different time advancement t = t1, t2,

t3 performed on the moving mesh (κc = 2 cm−1). Initial spectrum given by Eq. (139): —!—. PITM2 (equations with

commutation terms): t1: green, · · · " · · · , t2: maroon, − − " −− , and t3: cyan, — " —. PITM3 (equations without

commutation terms): t1: red, · · · , t2: orange, − − , and t3: violet, —.
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FIG. 4. Computation of the instantaneous dimensionless commutation term at a given time (!δūi )/(ūi δ!) versus the

dimensionless distance x1/L.

with

∂κc

∂t
< 0 (193)

appearing in Eq. (58) in its instantaneous form is neglected. It means that this part of energy due to
the variation of cutoff is not allowed to cross the cutoff as it should, creating an energy accumulation
in the box. As this equation shows, the effect would be more important on coarse grids because the
cutoff would occur earlier in the spectrum. With the aim to get an additional insight of the effect of the
commutation terms on the equations, Figure 4 plots the instantaneous evolution of the dimensionless
commutation term (!δūi )/(ūiδ!) at a given time versus the dimensionless distance x1/L. Although
the averaging of the commutation term in the homogeneous direction reduces to zero in absence of
mean convective velocity, one can see that the signal is characterized by appreciable fluctuations
in space that should therefore acting on the instantaneous filtered LES equations. So, commutation
introduces both global effects on energy levels and local effects in fluctuating terms. Figure 5 shows
the time decay of the turbulence, respectively, for the subfilter energy 〈ksfs〉, the resolved scale energy
<kles >, and the total energy for the PITM2 and PITM3 simulations performed on the moving mesh.
The decay laws shown for both simulations look very similar but it is important to notice that the
total and large scale energies for the PITM3 simulation decreases at a slightly lower rate than for
the PITM2 simulation. From a physical point of view, this result fully confirms the observation and
discussion made for Figure 3 showing that the level of energy in the density spectrum at higher wave
numbers is slightly but undoubtedly larger for the PITM2 calculation than for the PITM3 calculation.
Even if these observations involve small amounts of energy, they clearly show some aspects of the
role of commutation terms and how to account for them. Moreover, one can remark also that the
effect observed here is cumulative and increases with time. The decay law given by Eq. (173) where
k is in the present case obtained as the sum of the subfilter and resolved parts of energy leads to the
slope close to n = 1.1 according to the usual value of the coefficient cε2

≈ 1.9 for m = 1.4. More
investigations on the PITM results can be pursued but this first analysis conducted here is however
sufficient to determine the role of the filtering in the LES equations, even if the influence of the
commutation terms finally appears not crucial in the present test case. The reason is certainly due to
the slow decay in time of the filter width which is not sufficient to induce strong commutation errors.
As mentioned earlier, the grid of the mesh has been coarsened according to the given law (176)
that expresses the increase of the turbulence macroscale during decay governed by the Kolmogorov
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FIG. 5. Homogeneous decay of the turbulent kinetic energy k/k0, the resolved turbulent energy kles/k0, and the subfilter

turbulent energy ksfs/k0 with respect to the time advancement performed on the moving mesh (κc = 2 cm−1); equations with

commutation terms : ——; equations without commutation terms : red, - - - -.

cascade. This numerical procedure optimizes the mesh resolution and grid size because at each time
advancement, the grid evolution conforms to the energy spectrum changes and thus remains always
adapted for solving the filtered Navier-Stokes equations including also the transport equations for
the turbulent energy and the dissipation rate. But in an attempt to investigate the commutation effects
in a less favorable case, it is also worth performing PITM simulations on a moving mesh where
the grid expands more rapidly, for instance twice faster than the normal expansion rate. Of course,
this later case is more relevant for a purely numerical test than for a physical analysis. Indeed, it is
obviously less appropriate to account for the dynamics of turbulence decay. The value of p given in
Eq. (182) was p = 2/(m + 3) = 0.45455 for m = 1.4 when we performed the PITM2 and PITM3
calculations and we now propose to test to use twice this value, just to check how the method
works. Figure 6 displays the decay of the three-dimensional energy spectrum for the PITM4 and
PITM5 simulations performed on the new moving mesh, respectively, with and without solving the
commutation terms. As expected, the PITM4 curves are more dissipative than the PITM5 curves in
the high wave number range. At high wave numbers, one can see that the energy spectrum associated
with the PITM5 (without the commutation terms) is slightly higher than the one associated with
the PITM4 (with the commutation terms). As mentioned in Sec. III B concerning the statistical
interpretation in the spatial and spectral spaces, this outcome means that a part of energy contained
into the resolved scales is transferred into the modeled spectral zone. Globally, the results still remain
acceptable for both PITM simulations because the κ−5/3 Kolmogorov law is still well verified during
the decay of the turbulent energy, although the filter width now becomes too large to account for the
intermediate scales of the flow that should be computed by the numerical scheme instead of being
here modeled. Indeed, physically, the increase in time of the grid size during decay implies that the
relative part of modeled energy gradually increases, to the detriment of the resolved part of energy,
because the cutoff wave number κc gets smaller. In Figure 6, it is clear that the spectrum falloff
happens earlier than on the spectrum shown in Figure 2 or 3. This result is in perfect agreement
with the theory prediction because the time derivative of the cutoff wave number E(κc)∂κc/∂t is
now stronger in its absolute value and hence, the commutation errors are higher. One cannot miss to
remark however that the energy spectrum densities shown in Figure 6 extend further into the smaller
wave number range. Although this drawback is not the purpose of the present work (because it is
not really relevant to the κc commutation problem), we shall try to propose an explanation. This
behavior seems unexpected because the grid is expanding more rapidly. The calculation box in the
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FIG. 6. PITM simulations of the homogeneous decay of the energy spectra at different time advancement t = t1,

t2, t3 performed on the moving mesh where the grid expands twice faster the normal expansion rate (κc = 2 cm−1).

Initial spectrum given by Eq. (139): —!—. PITM4 (equations with commutation terms): t1: green, · · · " · · · , t2: maroon,

−− " −− , and t3: cyan, — " —. PITM5 (equations without commutation terms): t1: red, · · · , t2: orange, −− , and t3:

violet, —.

physical space is larger, the corresponding spectral box is correlatively smaller, and thus the large
eddies should be well resolved anyway. But, considering that the large eddies tend to occupy all the
space offered to them, energy can reach lower wave numbers in a slow process however. Probably
this process is shunted by the fact that periodic boundary conditions are still applied in the same way
when expanding grids are used, thus introducing artificial very big eddies. Let us mention again that
the PITM4 and PITM5 cases are to be understood as technical tests that remain purposely far from
the best physical choices.

VII. CONCLUSION

In this work, we have focused on the extension of the PITM method to the case of variable
filter width either in time or in space. The complex expressions of the commutation terms appearing
in the filtered turbulence equations have been analytically derived using the rules of convolution
operators with variable kernels associated with a comprehensive mathematical formalism. Then, the
general formalism has been applied to the particular case of the PITM method. Even if the proposed
technique can be applied to all commutation terms appearing in the transport equations of the
turbulence field, the emphasis has been laid upon the commutation effect in the material derivative
which was expected to be of a primary importance. From a physical point of view, we have shown
that the commutation term can be interpreted as an energy exchange from the resolved scales to the
modeled scales and vice-versa. The technique is intended to applications to turbulent flow simulations
with strongly variable meshes in time or space. The estimate for the noncommutation terms makes
use of a superfilter superimposed to the simulation filter. With the aim to illustrate the filtering
process in LES, the application to the decay of homogeneous turbulence has been considered. As a
result of interest, it appears that the PITM2 simulation solving the filtered equations written in the
ALE formulation including the commutation terms is able to accurately reproduce the decay of the
spectrum, in the region of the large wave numbers implying the κ−5/3 Kolmogorov decay but also
in the region of slow wave numbers dominated by large carrying scales of energy. In this particular
case, it has been shown that the accounting for the commutation terms in the filtered LES equations
improves the solution even if their influence on the equations is not crucial here, because of the
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slow decay in time of the filter width. For the moving mesh where the grid expands faster than the
normal expansion rate, even when the commutation errors are higher, we have shown that the present
method still continues to work correctly. This conclusion however pertains only to a particular flow
which remains close to spectral equilibrium during the time.

APPENDIX: MATHEMATICS IN PHYSICAL AND SPECTRAL SPACES

1. Cutoff filter in the spectral and physical spaces

The spectral cutoff filter is defined from

Ĝ(κ) = H (κc − κ), (A1)

where H denotes the Heaviside distribution and κc is the cutoff wave-number. Applying the inverse
Fourier transform of the filter function Ĝ leads to

G(x) =
1

(2π )3

∫
H (κc − κ)eiκxdκ . (A2)

If one denotes

M( f ) =

∫∫
©

S(κ)

f (κ) d A(κ) (A3)

as the spherical mean of the function f, then it is possible to write

G(x) =
1

(2π )3

∫ κc

0

M
(
eiκx

)
dκ. (A4)

If working in spherical coordinates, κ1 = κsin θcosφ, κ2 = κsin θsinφ, and κ3 = κcos θ , the
spherical mean of the function eiκ z can be easily calculated from

M
(
eiκx

)
=

∫ π

0

∫ 2π

0

κ2 sin θ eiκx cos θdθdφ. (A5)

Then, using the variable change
{

u = cos θ
du = − sin θdθ

, (A6)

one get

M
(
eiκx

)
=

∫ +1

−1

2πκ2eiκxudu = 2πκ2

[
eiκxu

iκx

]+1

−1

=
4πκ

x
sin κx, (A7)

so that the final result is

G(x) =
1

(2π )3

∫ κc

0

4πκ

x
sin κz dκ (A8)

or equivalently,

G(x) =
4π

(2πx)3
[sin(κcx) − κcx cos(κcx)] . (A9)

2. Variable convolution kernels

Considering the filtered value of a turbulent field quantity f (x), if the flow is homogeneous, a
constant convolution kernel G can be used such that

φ(x) =

∫

R3

G(x − ξ )φ(ξ )dξ = (G ∗ φ)(x), (A10)

with the normalization condition ∫

R3

G(ξ )dξ = 1. (A11)
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Note that this formula is mathematically equivalent to

φ(x) =

∫

R3

G(ξ )φ(x − ξ )dξ = (G ∗ φ)(x) (A12)

implying that

∂φ(x)

∂xi

=

∫

R3

G(ξ )
∂φ

∂xi

(x − ξ )dξ (A13)

or in shorthand notation

∂φ(x)

∂xi

=

(
G ∗

∂φ

∂xi

)
(x), (A14)

so that

∂φ

∂xi

(x) =
∂φ

∂xi

(x). (A15)

Incidentally, one remarks also that

∂φ(x)

∂xi

=

(
∂G

∂xi

∗ φ

)
(x). (A16)

These previous relations no longer hold when the filter size varies in time or/and in space. In this
case, the convolution kernel G is also a function of an additional parameter such as for instance the
width ! of the bell shaped curve of the filter. The filtered value is then defined from

φ(x, t,!) =

∫

R3

G(x − ξ ,!)φ(ξ , t)dξ = (G! ∗ φ)(x, t) (A17)

or equivalently,

φ(x, t,!) =

∫

R3

G(ξ ,!)φ(x − ξ , t)dξ = (G! ∗ φ)(x, t). (A18)

If the parameter ! is attached to the space field location x and possibly variable in time t, then

∂φ

∂xi

(x, t,!) .=
∂φ

∂xi

(x, t,!) (A19)

and an extra term appears in the derivatives. More precisely, taking the derivative of Eq. (A18) leads
to

∂φ(x, t,!)

∂xi

=

∫

R3

∂!

∂xi

∂G(ξ ,!)

∂!
φ(x − ξ , t)dξ +

∫

R3

G(ξ ,!)
∂φ(x − ξ , t)

∂xi

dξ (A20)

or in shorthand notation

∂φ(x, t,!)

∂xi

=
∂!

∂xi

∂

∂!
(G! ∗ φ)(x, t,!) + (G! ∗

∂φ

∂xi

)(x, t,!), (A21)

and finally

∂φ(x, t,!)

∂xi

=
∂!

∂xi

∂

∂!
φ(x, t,!) +

∂φ

∂xi

(x, t,!). (A22)

Similarly, one gets for the time derivatives

∂φ(x, t,!)

∂t
=
∂!

∂t

∂

∂!
φ(x, t,!) +

∂φ

∂t
(x, t,!). (A23)
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3. Commutation term for the cutoff filter

In the case of the spectral splitting, the commutation term βT(φ) can be expressed analytically
(see Sec. 8.3 on p. 437 of Ref. 20). For each variable φ, the Fourier transform and reverse Fourier
transform are defined by

φ(x, t) =

∫

R3

φ̂(κ, t)eiκxdκ (A24)

and

φ̂(κ, t) =

∫

R3

φ(x, t)e−iκxdx. (A25)

The filtering in spectral space implies multiplication by the filter function in wave number:

̂̄φ(κ, t) = Ĝκc
(κ, t) φ̂(κ, t). (A26)

Applying the definition (A24) to the filtered variable φ̄ using the relation (A26) leads to

φ̄(x, t) =

∫

R3

̂̄φ(κ, t)eiκxdκ =

∫

R3

Ĝκc
(κ, t) φ̂(κ, t)eiκxdκ (A27)

and the derivative of Eq. (A27) takes the form as

dφ̄(x, t)

dt
=

∫

R3

(

Ĝκc
(κ, t)

dφ̂

dt
(κ, t) + φ̂(κ, t)

dĜκc
(κ, t)

dt

)

eiκxdκ . (A28)

The integration of the first term appearing in the right hand side is simply the mean variable if
referring to Eq. (A27), so that Eq. (A28) can be rewritten into the following form as

dφ̄(x, t)

dt
=

dφ

dt
(x, t) + βt (φ), (A29)

where β t(φ) is defined as

βt (φ) =

∫

R3

φ̂(κ, t)
dĜκc

(κ, t)

dt
eiκxdκ . (A30)

For a box filter in the spectral size,

Ĝκc
(κ, t) = H (κc − κ, t), (A31)

where H denotes the Heaviside distribution verifying

d H (κc − κ, t)

dt
=

dκc

dt
δ(κc − κ, t), (A32)

and where δ is the Dirac distribution. Using Eq. (A32), Eq. (A30) becomes

βt (φ) =
dκc

dt

∫

R3

φ̂(κ, t)δ(κc − κ, t)eiκxdκ . (A33)

Introducing the spherical coordinates, κ1 = κsin θcosφ, κ2 = κsin θsinφ, and κ3 = κcos θ , one
finds finally

βt (φ) =
dκc

dt

∫∫
©
κ2=κ2

c

φ̂(κ, t)eiκxd A(κ). (A34)

4. Energy density spectrum variation through the cutoff wave number

We consider homogeneous turbulent flows. The transport equation for the filtered turbulence
energy (43) can be written using as well κc as the filter size parameter, the equation readily transforms
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into

D

Dt

(
ui ui

2

)
= ui

dui

dt
+
∂κc

∂t

∂

∂κc

(
ui ui

2

)
+ u j

∂κc

∂x j

∂

∂κc

(
ui ui

2

)
− ui

∂τ (u j , ui )

∂x j

+ u j

∂κc

∂x j

∂τ (u j , ui )

∂κc

.

(A35)

The corresponding statistical equation in the particular case of strictly homogeneous turbulence with
a time evolution of the filter size is then given by Eq. (62)

∂

∂t

〈
ūi ūi

2

〉
=

〈

ūi

dui

dt

〉

+
∂κc

∂t

∂

∂κc

〈
ūi ūi

2

〉
−

〈
ui

∂τi j

∂x j

〉
. (A36)

The resolved stresses are defined as in Ref. 36

(τi j )r = ūi ū j − 〈ui 〉
〈
u j

〉
(A37)

and for the resolved turbulence kinetic energy, the result is obtained by tensorial contraction

kr =
1

2

[
ū j ū j −

〈
u j

〉 〈
u j

〉]
. (A38)

The statistical turbulent energy is then derived by taking the mean value of Eq. (A38) in the statistical
sense leading to

〈kr 〉 =
1

2
[〈ūi ūi 〉 − 〈ui 〉 〈ui 〉]. (A39)

It is straightforward to relate the resolved turbulence kinetic energy given by Eq. (A39) to the
density spectrum:

〈kr 〉 =
1

2
[〈ūi ūi 〉 − 〈ui 〉 〈ui 〉] =

1

2

〈
u<

i u<
i

〉
=

∫ κC

0

E(κ)dκ, (A40)

with u<
i = ūi − 〈ui 〉. Remarking that the statistical mean velocity 〈ui〉 does not depend on the cutoff

wave number κc while the mean energy〈ui ui 〉 /2 does depend on κc, the derivative of Eq. (A40) then
yields

∂ 〈kr 〉

∂κc

=
∂

∂κc

〈
ūi ūi

2

〉
= E(κc, t). (A41)

So that Eq. (A36) becomes

∂

∂t

〈
ūi ūi

2

〉
=

〈

ūi

dui

dt

〉

+ E(κc, t)
∂κc

∂t
−

〈
ui

∂τi j

∂x j

〉
. (A42)

It can easily be shown that similar relations hold for the double velocity correlations, their derivation
is straightforward

∂

∂t

〈
1

2
ūi ū j

〉
=

〈

ūi

du j

dt

〉

+

〈

ū j

dui

dt

〉

+ ϕi j (κc, t)
∂κc

∂t
−

〈
ū j

∂τik

∂xk

〉
−

〈
ūi

∂τ jk

∂xk

〉
, (A43)

where ϕij is the three-dimensional spectral tensor of the double velocity correlations, such that
ϕjj/2 = E. These extra terms coming from the material derivative are thus interpreted as spectral
fluxes. In this form, they were an essential feature of the split spectrum statistical approach introduced
in Refs. 20–22. Equation (A42) can be rewritten using the partial derivative in time of Eq. (A40).
As a result, one then obtains

∂

∂t

∫ κc

0

E(κ, t)dκ =

〈

ūi

dui

dt

〉

−
∂

∂t

(
〈ui 〉 〈ui 〉

2

)
−

〈
ūi

∂τi j

∂xi

〉
+ E(κc, t)

∂κc

∂t
. (A44)
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On the other hand, the partial derivative in time of the three-dimensional turbulence kinetic energy
spectrum E(κ , t) is given by

∂

∂t

∫ κc

0

E(κ, t)dκ =

∫ κc

0

∂E(κ, t)

∂t
dκ + E(κc)

∂κc

∂t
. (A45)

The correspondence with Eq. (A44) is then straightforward.

5. Improved approximation proposal

As we have seen, the commutation term in the material derivative of the turbulence kinetic
energy is

1

2
βT (ui ui ) − ūiβT (ui ) =

Dκc

Dt

∂ks f s

∂κc

(A46)

using κc instead of !. This equation can be easily related to the energy spectrum by remarking that

∂
〈
ks f s

〉

∂κc

=
∂

∂κc

∫ ∞

κc

E(κ)dκ = −E(κc). (A47)

Assuming that the spectrum follows a Kolmogorov law in (−5/3) such as E(κ) = Cκε
2/3κ−5/3 (more

generally any m power law could be experimented), it is possible to compute
〈
k̃s f s

〉
−
〈
ks f s

〉
as

〈
k̃s f s

〉
−
〈
ks f s

〉
=

∫ κc

κ̃c

Cκε
2/3κ−5/3dκ = −

3

2
Cκε

2/3

[
1

κ
2/3
c

−
1

κ̃
2/3
c

]
. (A48)

This equation allows to compute Cκε
2/3 that is then introduced in the expression of the spectrum

E(κc) leading to

E(κc) = −
2

3
(
〈
k̃s f s

〉
−
〈
ks f s

〉
)

κ̃
2/3
c

(̃κ
2/3
c − κ

2/3
c )κc

, (A49)

with
〈
k̃s f s

〉
>
〈
ks f s

〉
and κ̃c < κc. So that Eq. (A46) becomes in the mean

Dκc

Dt

∂
〈
ks f s

〉

∂κc

= −E(κc)
Dκc

Dt
=

2

3

Dκc

Dt

(
κ̃

2/3
c

κc

)(〈
k̃s f s

〉
−
〈
ks f s

〉

κ̃
2/3
c − κ

2/3
c

)

. (A50)

Supposing now that the relation also holds approximately for the instantaneous quantities, we get

1

2
βT (ui ui ) − ūiβT (ui ) =

2

3

Dκc

Dt

(
κ̃

2/3
c

κc

)(
k̃s f s − ks f s

κ̃
2/3
c − κ

2/3
c

)
. (A51)

Comparing to the standard approximation

1

2
βT (ui ui ) − uiβT (ui ) ≈

Dκc

Dt

(
k̃s f s − ks f s

κ̃c − κc

)
, (A52)

one would be led to

1

2
βT (ui ui ) − uiβT (ui ) ≈ fcorr

Dκc

Dt

(
k̃s f s − ks f s

κ̃c − κc

)
, (A53)

with a possible correction factor to use in practical simulations

fcorr =
2

3

(
κ̃

2/3
c

κ
2/3
c − κ̃

2/3
c

)(
κc − κ̃c

κc

)
. (A54)
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24 J. Fröhlich, J. A. Denev, C. Hinterberger, and H. Bockhorn, “On the impact of tangential grid refinement on subgrid scale
modelling in large eddy simulation,” in 6th International Conference on Numerical Method and Applications (NMA), 2006,
edited by T. Boyanov, S. Dimova, K. Georgiev, and G. Nikolov (Springer, 2007), pp 550–557.

25 F. van des Bos and B. J. Geurts, “Dynamic of commutator-errors in LES with non-uniform filter width,” in Direct and Large
Eddy Simulation V, ERCOFTAC Vol. 9, edited by R. Friedrich, B. J. Geurts, and O. Métais (Kluwer Academic, 2004),
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