
From single-scale turbulence models to multiple-scale and

subgrid-scale models by Fourier transform

Bruno Chaouat∗

ONERA , 92322 Châtillon, France

Roland Schiestel∗∗

IRPHE, Château-Gombert, 13384 Marseille, France

Abstract

A theoretical method based on mathematical physics formalism that allows transposition of
turbulence modeling methods from URANS (Unsteady Reynolds Averaged Navier-Stokes) models,
to multiple-scale models and large eddy simulations (LES) is presented. The method is based on the
spectral Fourier transform of the dynamic equation of the two-point fluctuating velocity correlations
with an extension to the case of nonhomogeneous turbulence. The resulting equation describes the
evolution of the spectral velocity correlation tensor in wave vector space. Then, we show that the
full wave number integration of the spectral equation allows to recover usual one-point statistical
closure whereas the partial integration based on spectrum splitting, gives rise to partial integrated
transport models (PITM). This latter approach, depending on the type of spectral partitioning
used, can yield either a statistical multiple-scale model or subfilter transport models used in LES
or hybrid methods, providing some appropriate approximations are made. Closure hypotheses
underlying these models are then discussed by reference to physical considerations with emphasis
on identification of tensorial fluxes that represent turbulent energy transfer or dissipation. Some
experiments such as the homogeneous axisymmetric contraction, the decay of isotropic turbulence,
the pulsed turbulent channel flow and a wall injection induced flow are then considered as typical
possible applications for illustrating the potentials of these models.

1 Introduction

Mathematical turbulence modeling methods have made significant progress in the past decade for
predicting both internal and external turbulent flows. Many different approaches in turbulence
modeling have been developed up to now, such as Reynolds-averaged Navier-Stoke (RANS) mod-
els of first and second order based on one-point statistical closures ranging from algebraic models
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to transport equation models using various types of formulations [1, 2, 3], multiple-scale models
derived from two-point statistical closure [4, 5], and the method of large eddy simulations [6] (LES).
LES method based on subgrid modeling techniques has been now extensively developed because of
the increase of computer power and speed. All these various approaches have often been developed
independently and the connection between them is not always clearly established. Generally, the
RANS models appear well suited to handle engineering applications involving strong effects of
streamline curvature, system rotation, wall injection or adverse pressure gradient encountered for
instance in aeronautics and complex flows in industry and environment [7, 8, 9, 10]. LES models
are rather applied for simulating turbulent flows in fundamental studies with a special emphasis
focused on tracking turbulent flow structures, two-point velocity distribution and spectra, pressure-
strain fluctuating correlations and dissipation that cannot be obtained from experiment, but also
for simulating turbulent engineering flows in which a particular difficult phenomenon occurs [11].
Considering the performances and drawbacks of these two different approaches that are RANS and
LES, it seems that the decision of applying one model rather the other one depends on several
criteria. The choice is not only governed by the intrinsic performances of the model itself but it
depends also of the type of the physical phenomena involved and the answers that are expected
to the problem. Also, the computational framework, academic or industrial, is influential. It is of
interest to remark that recently, new turbulence models that take advantage of RANS and LES
approaches based on hybrid zonal methods [12, 13, 14, 15] or on hybrid continuous methods with
seamless coupling [16, 17, 18] are now developed for simulating engineering flows on relatively
coarse grid when the spectral cutoff is located before the inertial zone of the energy spectrum.
This line of thought appeared to gain major interest both on a fundamental and theoretical point
of view because it bridges different levels of description as well as on the applied point of view for
developing efficient practical methods [19, 20]. Considering these various and numerous turbulence
modeling models, developed often independently from each other, it appears that there is a need
to throw a bridge between these apparently different approaches, referring to their basic physical
foundations. With a particular emphasis upon the connection between RANS and LES, we shall
show that useful transpositions are possible if some approximations however are conceded.

The two-point approach of non-homogeneous turbulent fields as an expansion about homogene-
ity is used to develop both multiple scale statistical models and subfilter transport closures. Many
important works have been done in the past years on the methods to extend two-point closures
and spectral closure to the case of non-homogeneous turbulence. Theses various approaches based
on two-point correlations allow to represent all the turbulence scales and the directional properties
of structures. After the work of Cambon et al. [21] dealing with the extension of EDQNM (eddy-
damped quasi-normal Markovian) closures to homogeneous anisotropic turbulence, several efforts
have been made to extend the method to non-homogeneous turbulence. Burden [22] was among the
first attempts introducing weak inhomogeneity based on developments about homogeneity. Among
these contributions also, the work of Besnard et al. [23] provides the exact equations of double
correlation spectra in the case of non homogeneous fields, used as a basis for developing nonhomo-
geneous spectral closures. Laporta and Bertoglio [24, 25] derived the full equations for two-point
correlations and spectra in non homogeneous fields. But considering the high complexity of the
algebra, the model was reduced to one dimension by shell integration. The variations of mean

2



velocity in space was accounted by the use of Taylor series approximations rather than complete
Fourier transform. This method is useful for introducing free flow inhomogeneity that extend in
all space but the presence of walls bring new considerable complexities. These complexities are
indeed reflecting the fact that Fourier transform is not the appropriate operator to apply for fully
inhomogeneous fields. It can however still be very useful if some approximations are accepted. A
simplified form of spectral model based on the energy spectrum has been developed by Bertoglio
and Jeandel [26] and afterwards by Parpais [27] for practical applications. The extension to the
one-dimensional spectral tensor of double velocity correlation has been considered by Touil et al.
[28, 29]. The works of Clark and Zemach [30] as well as Rubinstein and Clark [31] are also related
to spectral dynamic closures based on DIA (Direct interaction approximation) or on Heisenberg
model, that are able to exhibit refined properties of the turbulence field. One may cite also the
work of Yoshisawa [32] that introduces a two scale expansion in the DIA equations formalism. An
interesting overview is also given in reference [33]. Two-point correlation equations in physical
and in spectral space have also been used to develop one point statistical multiple scale models.
Assuming that turbulent scales vary much faster than the mean flow field, non-local operators can
be approximated in Taylor series. So that when the development is limited to a linear term, it
can be interpreted has a locally tangent homogeneous space. Assuming these hypotheses, multi-
ple scale models based of transport equations for several spectral slices have been developed by
Schiestel [5, 34, 35]. Note that another multiscale approach based on the spectral model of Clark
and Zemach [30] has been also developed by Cadiou et al. [36]. These authors have introduced
several characteristic length scales that are deduced from the series of moments of the spectral one
dimensional tensor.

In the present paper, we propose a theoretical method based on mathematical physics formalism
that allows transposition of turbulence modeling from RANS to LES. Some efforts have been made
these last years by various authors that attempt to bridge the gap between the traditional RANS
method and the LES approach, giving further insight into VLES (Very Large Eddy Simulation),
as made by Liu and Shih [37], for instance. Several works in the recent literature also show that
the use of more advanced model for subgrid closure, including algebraic models or stress transport
models inspired from RANS may be beneficial [38, 39]. This can be related also to the hybrid
RANS/LES approach with seamless coupling [15, 20].

Spectral turbulence theory provides the main ingredient of this development. The theory deals
with the dynamic equation of the two-point velocity fluctuating correlations with extensions to the
case of nonhomogeneous flows. This choice is motivated by the fact that the two-point velocity
correlation equation enables a detailed description of the turbulence field that also contains the
one point information as a special case. Then, using Fourier transform and performing averaging
on spherical shells on the dynamic equation, leads formally to the evolution equation of the spec-
tral velocity correlation tensor in one-dimensional spectral space. In this situation, the turbulence
quantities are represented by functions of the scalar wave number rather than a wave vector. This
spectral equation has been retained for developing one-dimensional non-isotropic spectral models
[40, 21, 41]. On the one hand, a full integration over the wave number space of the resulting evolu-
tion equation of the spectral velocity correlation tensor allows to recover formally usual one-point
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statistical models. On the other hand, a partial integration over a split spectrum, with a given
spectral partitioning, yields partial integrated transport models (PITM) that can be transposed
both in statistical multiple-scale models and in subfilter scale modeling for large eddy simulations
[16, 17]. Closure of these different transport equations needs modeling of the pressure-strain cor-
relation, inertial and fast transfers, diffusive and dissipative processes. These physical processes
are identified and discussed in spectral space. In usual turbulent flows, the spectral energy dis-
tribution is evolving in time and space and in the multiple-scale framework, the splitting wave
numbers also vary accordingly. This procedure provides a clue for deriving the flux equations in
statistical split spectrum models. In the case of large-eddy simulations however, the filter width
is imposed and we show how the transfer terms can be directly computed. The dissipative terms
are considered equals to the corresponding spectral fluxes issuing from the last slice of the spectrum.

Some typical applications are considered for illustrating the capabilities of each turbulence
model. The homogeneous axisymmetric contraction flow and the decay of isotropic turbulence
with an initial perturbed spectrum are presented in the framework of multiple-scales models. LES
simulations using partial integrated models for unsteady turbulent channel flow subjected to a peri-
odic forcing or wall injection including laminar to turbulent transition regimes are then considered
and briefly discussed. These concepts give rise to continuous hybrid modeling techniques.

2 Transport equation of the two-point velocity fluctu-

ation

We consider the turbulent flow of a viscous fluid. In the present case, each flow variable is decom-
posed into a statistical mean value and a fluctuating turbulent part which is developed into several
ranks of fluctuating parts using an extension of the Reynolds decomposition. For the velocity
component, we write then

ui = 〈ui〉+

N∑

m=1

u
′(m)
i , (1)

where the partial fluctuating velocities are defined by partial integration of their generalized Fourier
transform

u
′(m)
i (ξ) =

∫

κm−1<|κ|<κm

û′i(κ) exp (jκξ)dκ, (2)

where û′i(κ) denotes the Fourier transform of u′i(ξ) and κm is a series of evolving partitioning
wave numbers. Applying the basic decomposition of the turbulent velocity defined by relations

(1) and (2) for m = 1 enables one to recover the velocity decomposition ui = 〈ui〉 + u
′(1)
i used

in RANS models in which the whole spectrum is modeled . For m = 2 or higher, we find the
usual decomposition retained for the multiple-scale statistical models. The two-level decomposition
m = 2 is also relevant for the decomposition used in large eddy simulations where only one part

of the spectrum containing the small eddies is modeled ui = 〈ui〉 + u<i + u>i with u<i = u
(1)
1

and u>i = u
(2)
2 , whereas for the other part of the spectrum containing large eddies is resolved

by the simulation. In this case, it is of interest to note that the velocity computed as ūi =
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〈ui〉 + u<i represents in fact the filtered velocity which contains both statistical mean and large
eddies fluctuations whereas u>i is the subgrid-scale fluctuation of the small eddies. This definition
can be viewed in fact as a special particular case of the Yoshizawa statistical filter [42, 43]

ūi(ξ) =

∫

|κ|<κc

ûi(κ) exp (jκξ)dκ+

〈 ∫

|κ|<κc

ûi(κ) exp (jκξ)dκ

〉
(3)

In the present case we shall consider that the approximation of locally homogeneous anisotropic
turbulence can be used, so that the statistical mean of the Fourier modes are all zero 〈ûi(κ)〉 = 0
except for κ = 0. Then, the zero mode give rise to the constant mean value 〈ui〉 and

ūi = 〈ui〉+ u<i = 〈ui〉+

∫

|κ|<κc

û′i(κ) exp (jκξ)dκ (4)

The approximation of tangent homogeneous field will be discussed in the remainder of the paper.
It implies also that the mean value will not be Fourier transformed but is approximated by a
Taylor series. One can remark, already, that the filter (4) presents the twofold interpretation of a
statistical filter, in the sense that being defined as a linear combination of modes which are random
variables, it is a Fourier space filter but it is also a partial statistical mean. This twofold character
will be useful for RANS/LES transpositions.

The general case of nonisotropic inhomogeneous turbulence is considered in the present formal-
ism for linking the different turbulence modeling approaches. In this case, the two-point velocity

correlation Rij =
〈
u′iAu

′
jB

〉
is function of the distance between the points A and B, denoted ξ, but

also of the location of these points xA and xB in the flow field because of the inhomogeneity of the
turbulence field. New independent variables defined by the vector difference ξ = xB − xA and the
midway position X = 1

2(xA + xB) are then introduced in the present derivation in order to distin-
guish the effects of distance separation from the effects of space location. So that each variable can
be regarded as a function of the two variables ξ and X. Taking into account these considerations,
the complete dynamic equation for the double velocity correlation for incompressible fluid flow is
written as follows [44]

∂Rij(X , ξ)

∂t
+

1

2

(
〈ukA〉+ 〈ukB〉

)∂Rij(X, ξ)

∂Xk
= −Rjk(X, ξ)

(
∂ 〈ui〉

∂xk

)

A

−Rik(X , ξ)

(
∂ 〈uj〉

∂xk

)

B

−
(
〈ukB〉 − 〈ukA〉

)∂Rij(X, ξ)

∂ξk
−

1

2

∂

∂Xk

(〈
u′iAu

′
kBu

′
jB

〉
+
〈
u′iAu

′
kAu

′
jB

〉)
(X, ξ)

−
∂

∂ξk

( 〈
u′iAu

′
kBu

′
jB

〉
−
〈
u′iAu

′
kAu

′
jB

〉 )
(X , ξ)−

1

2ρ

(
∂

∂Xi

〈
p′Au

′
jB

〉
+

∂

∂Xj

〈
p′Bu

′
iA

〉)
(X, ξ)

+
1

ρ

(
∂

∂ξi

〈
p′Au

′
jB

〉
−

∂

∂ξj

〈
p′Bu

′
iA

〉)
(X , ξ) +

ν

2

∂2Rij

∂Xl∂Xl
(X , ξ) + 2ν

∂2Rij

∂ξl∂ξl
(X , ξ) (5)

The Fourier transform of this equation in the general case of nonhomogeneous turbulence is de-
veloped in Laporta work [24]. The main complexities arises from the production and convection
terms that involve the mean velocity. This method [24] allows to avoid the Fourier transform of
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the mean velocity itself. It is based on a Taylor series representation of the mean velocity such
that

〈ukB〉 − 〈ukA〉 ≈ ξm
∂ 〈uk〉

∂Xm
+ ..., (6)

〈ukA〉+ 〈ukB〉 ≈ 2 〈uk〉 (Xm) +
ξmξp
2

∂2 〈uk〉

∂Xm∂Xp
+ ..., (7)

Rjk

(
∂ 〈ui〉

∂xk

)

A

+Rik

(
∂ 〈uj〉

∂xk

)

B

≈ Rjk
∂ 〈ui〉

∂Xk
+Rik

∂ 〈uj〉

∂Xk
−
ξm
2
Rjk

∂2 〈ui〉

∂Xk∂Xm
+
ξm
2
Rik

∂2 〈ui〉

∂Xk∂Xm
+ ...

(8)
Then, if the development is restricted to its first term only, then 〈uk〉 (Xm+ξm) = 〈uk〉 (Xm)+Λkjξj,
and the Fourier terms are identical to the ones in homogeneous anisotropic turbulence. This
approach is equivalent to consider that the mean velocity gradient is locally “constant ”. The
complete equation in physical space which contains additive contributions of homogeneous and
nonhomogeneous terms can be written in the following way

∂Rij(X , ξ)

∂t
+ 〈uk〉

∂Rij(X , ξ)

∂Xk
= −Rjk(X , ξ)

∂ 〈ui〉

∂Xk
−Rik(X, ξ)

∂ 〈uj〉

∂Xk

−ξp
∂ 〈uk〉

∂Xp

∂Rij

∂ξk
(X , ξ)−

1

2

∂

∂Xk
(Si,kj+Sik,j)(X , ξ)−

∂

∂ξk
(Si,kj − Sik,j)(X , ξ)

−
1

2ρ

(
∂K(p)j

∂Xi
+
∂Ki(p)

∂Xj

)
(X , ξ) +

1

ρ

(
∂K(p)j

∂ξi
−
∂Ki(p)

∂ξj

)
(X , ξ)

+
ν

2

∂2Rij(X , ξ)

∂Xl∂Xl
+ 2ν

∂2Rij(X, ξ)

∂ξl∂ξl
(9)

where the term Si,jk and Sik,j denote the turbulent diffusion terms due to the fluctuating velocities

Si,kj(X , ξ) =
〈
u′iAu

′
kB
u′jB
〉
,

Sik,j(X , ξ) =
〈
u′iAu

′
kA
u′jB
〉
, (10)

and the terms K(p)i and Ki(p) are turbulent diffusion terms due to the fluctuating pressure defined
by

K(p)i(X , ξ) =
〈
p′Au

′
iB

〉
, (11)

and
Ki(p)(X, ξ) =

〈
p′Bu

′
iA

〉
. (12)

Note that K(p)i(X , ξ) = Ki(p)(X,−ξ), and K(p)i(X , ξ) = −K(p)i(X ,−ξ). This is demonstrated
in detail in reference [44]. In equation (9), we have chosen the analytic form which gives a direct
connection with the one-point Reynolds stress equation [5, 40]. In particular, we emphasize that
Taylor series expansion in space have been applied for computing the velocity at different points.
So, the mean velocity field will not be the Fourier transformed but is rather approximated by a
Taylor series. As mentioned by Schiestel [5], the nonhomogeneous terms that appear in equation
(9) correspond to the usual terms in one-point equation whereas the others terms involving the
distance ξ can be treated as in homogeneous anisotropic turbulence. Therefore, this method can be
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viewed as considering the tangent homogeneous anisotropic field at pointX of the nonhomogeneous
field. This useful concept will be used throughout the paper. It is based on the idea that a locally
tangent homogeneous turbulence field can be defined by analytic continuation from the knowledge
of derivative of correlations at ξ = 0. More precisely, the knowledge of ∂ij...mC(ξ = 0) where C is

a statistical correlation is thus equivalent to the knowledge of the spectrum Ĉ(κ), rebuilt from its
moments ∫

κiκj...κmĈ(κ)dκ (13)

Indeed, this approach encounters difficulties when wall boundaries are introduced [24] because
Fourier transform is no longer the appropriate mathematical tool. In this case, the equations can
still be considered formally and empirically adapted to account for wall effects. Considering the
Fourier transform of Rij(X, ξ) that is expressed as

R̂ij(X,κ) =

∫
Rij(X, ξ) exp (−jκξ) dξ, (14)

the transport equation of the double velocity correlation in locally tangent spectral space then
reads

∂R̂ij(X,κ)

∂t
+ 〈uk〉

∂R̂ij(X ,κ)

∂Xk
= −R̂jk(X ,κ)

∂ 〈ui〉

∂Xk
− R̂ik(X ,κ)

∂ 〈uj〉

∂Xk

+κk
∂ 〈uk〉

∂Xp

∂R̂ij

∂κp
(X ,κ)−

1

2

∂

∂Xk
(Ŝi,kj + Ŝik,j)(X ,κ)− jκk(Ŝi,kj − Ŝik,j)(X ,κ)

−
1

2ρ

(
∂K̂(p)j

∂Xi
+
∂K̂i(p)

∂Xj

)
(X,κ) +

j

ρ

(
κi K̂(p)j − κj K̂i(p)

)
(X ,κ)

+
ν

2

∂2R̂ij(X,κ)

∂Xl∂Xl
− 2νκ2R̂ij(X ,κ) (15)

Referring to the work of Besnard et al. [23], this equation appears as a first order approximation of
the exact spectral transport equations. Pressure terms can be calculated from the Poisson equations
obtained by applying the divergence operator to the double correlation equations [44, 25, 45].

3 One-dimensional models by spherical mean

For each variable f(x) and its Fourier transform f̂(κ), we define the spherical mean of the Fourier
transform by the relation

(f(x))∆ = f∆(κ) =
1

A(κ)

∫ ∫

∂A
f̂(κ)dA(κ) (16)

where dA(κ) is the area element on the sphere of radius κ = |κ|. The transport equation of the
one-dimensional spectral tensor of the double velocity correlations which governs the turbulent
processes which develop in the one-dimensional Fourier space is obtained by taking the Fourier
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transform and mean integration over spherical shells of original equation (15) in physical space.
Spherical averages allow to make some useful simplifications in the spectral equations, loosing the
directional information, the averaged spectral correlations are then only function of the wavenumber
and not any more of the wavevector. This practice has been currently used in the Lyon group in
France [21, 26, 28, 29]. Remaining within the framework of the tangent homogeneous spectral
space, this equation then reads

∂ϕij

∂t
(X , κ) + 〈uk〉

∂ϕij(X, κ)

∂Xk
= Pij(X , κ) + θij(X , κ) + ζkimj(X , κ)

∂ 〈uk〉

∂Xm

+Ξij(X, κ) −
1

2

∂

∂Xk
(ςi,kj + ςik,j) (X, κ) + Υij(X, κ) (17)

where, the function ϕij denotes the spherical mean of the Fourier transform of the two-point
correlation tensor

ϕij(X , κ) = (Rij(X, ξ))∆ . (18)

This type of approach is the basis of spectral models developed in references [40, 21]. On the right
and side of equation (17), Pij represents the production term defined by

Pij(X , κ) = −ϕik(X , κ)
∂ 〈uj〉

∂Xk
− ϕjk(X , κ)

∂ 〈ui〉

∂Xk
, (19)

the first transfer term θij related to the triple velocity correlations, is the inertial cascade

θij(X , κ) = −
( ∂

∂ξk
(Si,kj − Sik,j) (X, ξ)

)∆
, (20)

the second transfer term ζkimj represents the fast transfer by action of mean velocity gradients

ζkimj(X , κ) = −

(
ξm
∂Rij

∂ξk
(X , ξ)

)∆

, (21)

the turbulent diffusion terms ςi,jk and ςik,j are due to fluctuating velocities

ςi,kj(X, κ) = (Si,kj(X, ξ))∆ ,

ςik,j(X, κ) = (Sik,j(X, ξ))∆ , (22)

the pressure terms in equation (17) are obtained as

Ξij(X, κ) =
1

ρ

(
∂Kj

∂ξi
−
∂Ki

∂ξj

)
−

1

2ρ

(
∂Kj

∂Xi
+
∂Ki

∂Xj

)
(23)

where Ki is the turbulent diffusion due to fluctuating pressure defined by

Ki(X , κ) =
(
Ki(p)(X, ξ)

)∆
=
(
K(p)i(X , ξ)

)∆
(24)

Equation (24) makes use of the properties given in preceding section (2). The Ki term appears
through its gradient in Xi in the general transport equation of the spectral tensor and consequently
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can be interpreted as a contribution of pressure to the turbulent diffusion. According to the present
choice of independent variables, and in agreement with the one-point Reynolds stress equations
deduced from the integration of equation (17), the following splitting is introduced [45]

Ξij(X , κ) = Πij(X, κ) −
1

ρ

(
∂Kj

∂Xi
+
∂Ki

∂Xj

)
(25)

with

Πij(X, κ) =
1

ρ

(
∂Kj

∂ξi
−
∂Ki

∂ξj

)
+

1

2ρ

(
∂Kj

∂Xi
+
∂Ki

∂Xj

)
(26)

which satisfies the condition Πii = 0 in homogeneous turbulence because of the continuity equation.
The right hand side of equation (25) thus embodies two physical processes : first is the pressure-
strain correlation effect and second is the turbulent diffusion effect.
The term Υij embodies all the viscous terms including molecular diffusion and viscous dissipation
rate

Υij(X , κ) =
ν

2

∂2ϕij(X , κ)

∂Xl∂Xl
− 2νκ2ϕij(X , κ) (27)

The form of this term is a consequence of Fourier transform along with the particular choice of
variable change introduced in paragraph 2. This splitting is different from what would be guessed
from physical intuition. For this reason, we prefer to introduce the equivalent splitting

Υij(X, κ) = ν
∂2ϕij(X , κ)

∂Xl∂Xl
− Eij(X, κ) (28)

which is consistent with the one point usual transport equation of the Reynolds stresses. The first
term in the right hand side of equation (28) is the molecular viscous diffusion term and the second
term Eij represents the dissipation rate

Eij(X, κ) =
ν

2

∂2ϕij(X , κ)

∂XlXl
+ 2νκ2ϕij(X, κ) (29)

that is now composed of two different contributions (see also a remark given by Jones and Launder
in reference [46]). Equation (29) defines the dissipation rate in the general case of non-homogeneous
turbulence. For the scalar dissipation rate, this implies

E(X , κ) =
ν

2

∂2E(X, κ)

∂XlXl
+ 2νκ2E(X , κ) (30)

with

E(X , κ) =
1

2
ϕjj(X , κ) (31)

These relations have been also considered in the work of Jovanovic et al. [47] and Jakirlic and
Hanjalic [48] who introduce the homogeneous dissipation rate

Eh(X, κ) = E(X, κ) −
ν

2

∂2E(X , κ)

∂XlXl
(32)
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in the near wall modeling. For homogeneous turbulence, the definitions for Πij in equation (26)
and Eij in equation (29) reduce to the following form

Πij(X , κ) = Πh
ij(X, κ) =

1

ρ

(
∂Kj

∂ξi
−
∂Ki

∂ξj

)
(33)

and
Eij(X , κ) = Eh

ij(X, κ) = 2νκ2ϕij(X, κ) (34)

We will verify in the next section that expressions for the pressure-strain correlation term as well
as for the dissipation rate indeed correspond to the usual definitions used in one-point statistical
models. For the clarity of the presentation, equation (17) is rewritten in a more compact form

Dϕij(X, κ)

Dt
= Pij(X, κ) + Tij(X , κ) + Πij(X, κ) + Jij(X, κ) − Eij(X , κ) (35)

with the definition
Dϕij(X , κ)

Dt
=
∂ϕij(X , κ)

∂t
+ 〈uk〉 (X)

∂ϕij(X, κ)

∂Xk
. (36)

In this equation, Tij is the total transfer term defined by

Tij(X, κ) = θij(X, κ) + ζkimj(X, κ)
∂ 〈uk〉

∂Xm
, (37)

and Jij embodies all the diffusion like terms

Jij(X, κ) = −
1

ρ

(∂Kj

∂Xi
+
∂Ki

∂Xj

)
−

1

2

∂

∂Xk
(ςi,kj + ςik,j) + ν

∂2ϕij(X , κ)

∂XlXl
. (38)

4 Integration in the spectral space

4.1 Full integration in spectral space for usual one-point statisti-
cal turbulence models

The full integration in the spectral space of equation (17) allows to recover usual one-point statis-
tical models in the physical space. Indeed, it corresponds to the limiting case in which the distance
between the two-points goes to zero (ξ = 0) in physical space. The usual one-point turbulent stress
tensor Rij is computed as follows

Rij =

∫ ∞

0
ϕij(X , κ)dκ. (39)

The production term Pij is simply calculated from equation (19)

Pij =

∫ ∞

0
Pij(X, κ)dκ = −Rik

∂ 〈uj〉

∂xk
−Rjk

∂ 〈ui〉

∂xk
(40)

10



The calculation of the pressure-strain correlation is quite difficult because of the presence of sev-
eral terms in equation (26). However, using the reciprocal change in variables for evaluating the
gradients (cf. Appendix A1) allows to obtain the usual expression

Ψij =

∫ ∞

0
Πij(X , κ)dκ =

〈
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
(41)

The dissipation rate ǫij is obtained by integrating the tensor Eij defined in equation (29) in the
spectral space. By developing the calculation (cf. Appendix A2), we finally get the usual expression
of the dissipation-rate

ǫij =

∫ ∞

0
Eij(X , κ)dκ = 2ν

〈
∂u′i
∂xm

∂u′j
∂xm

〉
(42)

The diffusion term Jij computed from equation (38) requires also some algebra (cf. Appendix A3)
to give

Jij =

∫ ∞

0
Jij(X , κ)dκ = −

1

ρ

(
∂

∂xi

〈
p′u′j

〉
+

∂

∂xj

〈
p′u′i

〉)
−

∂

∂xk

〈
u′iu

′
ju

′
k

〉
+ ν

∂2Rij

∂xlxl
. (43)

As expected, the total transfer term Tij that corresponds to the integration of the term Tij defined
in equation (37) vanishes because of the one-point correlations properties (cf. Appendix A4)

Tij =

∫ ∞

0
Tij(X, κ)dκ = 0 (44)

As results of equations (40), (41), (42), (43), (44), one can see that the present mathematical
formalism provides therefore a direct connection between spectral tensor equations and the usual
one-point transport equation of the turbulent Reynolds stress

DRij

Dt
= Pij +Ψij + Jij − ǫij (45)

whereas a tensorial contraction of equation (45), yields the transport equation of the turbulent
kinetic energy

Dk

Dt
= P + J − ǫ (46)

4.2 Partial integration in spectral space for statistical multiple-
scale turbulence models

The transport equation of the partial turbulent stress R
(m)
ij is obtained by partial integration of

the spectral spectrum in the wave number range [κm−1, κm]. The partial turbulent stress R
(m)
ij is

defined by

R
(m)
ij =

∫ κm

κm−1

ϕij(X, κ)dκ. (47)

11



Keeping in mind that the wave numbers are evolving in time, integration of equation (35) over the

range [κm−1, κm] provides the transport equation for the partial turbulent stress R
(m)
ij

DR
(m)
ij

Dt
= P

(m)
ij + F

(m−1)
ij − F

(m)
ij +Ψ

(m)
ij + J

(m)
ij − ǫ

(m)
ij (48)

where

P
(m)
ij =

∫ κm

κm−1

Pij(X, κ)dκ = −R
(m)
ik

∂ 〈uj〉

∂xk
−R

(m)
jk

∂ 〈ui〉

∂xk
, (49)

F
(m)
ij = F

(m)
ij − ϕij(X, κ)

∂κm
∂t

, (50)

F
(m)
ij = −

∫ κm

0
Tij(X, κ)dκ, (51)

and

Ψ
(m)
ij =

∫ κm

κm−1

Πij(X , κ)dκ, (52)

J
(m)
ij =

∫ κm

κm−1

Jij(X , κ)dκ, (53)

ǫ
(m)
ij =

∫ κm

κm−1

Eij(X , κ)dκ. (54)

The transport equation of the partial turbulent kinetic energy k(m) is simply obtained by contract-
ing the indices of equation (48)

Dk(m)

Dt
= P (m) + F (m−1) − F (m) + J (m) − ǫ(m) (55)

with the following definitions

F (m) = F (m) − E(X , κ)
∂κm
∂t

(56)

where E(X, κ) = 1
2ϕii(X, κ) and P (m) = 1

2P
(m)
ii , F (m) = 1

2F
(m)
ii , J (m) = 1

2J
(m)
ii , ǫ(m) = 1

2ǫ
(m)
ii . On

a schematic point of view, equilibrium high Reynolds number turbulence is attained when all the

contributions ǫ
(m)
ij are reduced to zero in all the wave number ranges [κm−1, κm] except for the last

one (the dissipation range) which verifies the relation ǫ
(m+1)
ij = F

(m)
ij .

4.3 Practical case of two-scale turbulence models

The turbulent stress in the range [κ1, κ2] is denoted R
(2)
ij and is defined by the integration of the

spectral tensor ϕij(X , κ) over the range domain [κ1, κ2]

R
(2)
ij =

∫ κ2

κ1

ϕij(X , κ)dκ. (57)
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It is considered that the energy contained in the range of wave numbers [κ2,∞[ is entirely negligible.
The general equation (48) can be applied in particular to any wave number range such as [0, κ1],
[κ1, κ2] and [κ2,∞[. Taking into account the significant processes which develop in the spectral
space, one can easily obtain the resulting approximated equations

DR
(1)
ij

Dt
= P

(1)
ij − F

(1)
ij +Ψ

(1)
ij + J

(1)
ij − ǫ

(1)
ij , (58)

DR
(2)
ij

Dt
= P

(2)
ij + F

(1)
ij − F

(2)
ij +Ψ

(2)
ij + J

(2)
ij − ǫ

(2)
ij , (59)

0 = F
(2)
ij − ǫ

(3)
ij (60)

where at high Reynolds number, we can considered that ǫ
(1)
ij = ǫ

(2)
ij ≈ 0, ǫ

(3)
ij ≈ ǫij , F

(1)
ij = Fij(κ1)

and F
(2)
ij = Fij(κ2). Equation (60) indicates that the dissipation rate ǫ can indeed be interpreted

as a spectral flux. Taking into account these relations, equation (59) can be rewritten in the more
usual form

DR
(2)
ij

Dt
= P

(2)
ij + F

(1)
ij +Ψ

(2)
ij + J

(2)
ij − ǫij (61)

with the definitions

P
(2)
ij =

∫ κ2

κ1

Pij(X , κ)dκ = −R
(2)
ik

∂ 〈uj〉

∂xk
−R

(2)
jk

∂ 〈ui〉

∂xk
, (62)

Ψ
(2)
ij

∫ κ2

κ1

Πij(X, κ)dκ, (63)

J
(2)
ij =

∫ κ2

κ1

Jij(X , κ)dκ (64)

and where the terms F
(j)
ij and F

(j)
ij are given by previous equations (50) and (51), respectively.

Equation of the fine grained energy denoted k(2) is then obtained by tensor contraction of equation
(61) over its indices, so that we obtain

Dk(2)

Dt
= P (2) + F (1) + J (2) − ǫ. (65)

5 The need of closures hypothesis

5.1 The pressure-strain correlation terms

As in standard one-point Reynolds stress models, the pressure strain-correlation term Ψij plays an
essential role in redistributing the energy among the Reynolds stress components [49]. This term
is decomposed into a slow and a rapid part that characterize the return to isotropy

Ψij = Ψ1
ij +Ψ2

ij (66)
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where the non-linear interactions term Ψ1
ij describes action of turbulence on itself

Ψ1
ij = −c1

ǫ

k

(
Rij −

2

3
kδij

)
, (67)

whereas the linear term Ψ2
ij describes the action of mean velocity gradients

Ψ2
ij = −c2

(
Pij −

2

3
Pδij

)
(68)

The quantities c1 and c2 are two coefficient functions that may depend on the invariants of the
anisotropy tensor defined by aij = (Rij − 2/3kδij)/k. Note that expressions (67) and (68) are the
basic modeling used in standard RSM models but in the past decade, more sophisticated closures
have been developed in the literature [2, 3, 50]. The closure proposed in multiple-scale models [5]
consists in applying locally equations (67) and (68) in a particular spectral slice defined by the

range [κm−1, κm]. For each slice contribution Ψ
(m)
ij and Ψ

(m,1)
ij , extension of equations (67) and

(68) is written in the following way

Ψ
(m,1)
ij = −c

(m)
1

F (m)

k(m)

(
R

(m)
ij −

2

3
k(m)δij

)
, (69)

Ψ
(m,2)
ij = −c

(m)
2

(
P

(m)
ij −

2

3
P (m)δij

)
, (70)

where in these expressions, the spectral flux F (m) is now introduced instead of the dissipation

rate ǫ. Each spectral slice (m) is characterized by the quantities F (m) and R
(m)
ij . As it can be

intuitively justified, the spectral flux F (m) which embodies several mechanisms is chosen to build
the time scale because it is sensitive to the location of the spectral splitting. Considering for
instance the self similar decay of grid turbulence in the initial period [34, 35], the partial energy
equations

dk(1)

dt
= −F (1) (71)

dk(2)

dt
= F (1) − F (2) (72)

together with F (2) ≈ ǫ, imply
k(1)

F (1)
=

k(2)

ǫ− F (1)
(73)

using the hypothesis
dk(1)

k(1)
=
dk(2)

k(2)
=
dk

k
, k = k(1) + k(2) (74)

of a similar decay. Consequently,
F (1)

ǫ
=
k(1)

k
(75)
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The corresponding scale varies according to the ratio of partial kinetic energy. Moreover, in order

to increase the return to isotropy for high wave numbers, the coefficient c
(m)
1 is no longer considered

as a constant but is now dependent on the spectral slice. It increases versus the wave number κ.
The specific values may be chosen empirically by reference to experimental behaviours (see for
instance paragraph on the application of two and three-scale stress models). On the other hand,

the coefficient c
(m)
2 is still taken as a constant. Note that these type of models can also be deduced

from a spectral calculation of the term Πh
ij which is defined in equation (33), as indicated in

references [5, 40].

5.2 The transfer terms

The spectral energy transfer terms appear in the transport equations (48) and (59) respectively
for the multiple-scale models and two-scale models as a consequence of two-point statistics. These
terms need to be modeled. In this case, it is necessary to define the partitioning wave numbers
through the spectrum. Indeed, because of the evolution of the turbulent characteristic scale and
energy distribution in time and space, it is assumed that the splitting wave numbers are related to
the local parameters k(m) and F (m) by the dimensional relation

κm − κm−1 = αm
F (m)

(k(m))3/2
(76)

where αm is a numerical constant. This practice allows the splitting location to remain meaningful
because it complies with the spectrum changes. The derivative of equation (76) with respect to
time using both equations (56) and (55) for evaluating the derivatives of the splitting wave number
κ(m) and the partial energy k(m), respectively, provides the equation of the spectral flux

dF (m)

dt
= C

(m)
1

F (m)P (m)

k(m)
+ C

(m)
2

F (m)F (m−1)

k(m)
+ C

(m)
3

(
F (m)

)2

k(m)
+ C

(m)
4

F (m)ǫ(m)

k(m)
(77)

where C
(m)
i are coefficients depending on the spectral slice. The tensorial flux F

(m)
ij is then deter-

mined by the scalar flux F (m) assuming the empirical relation

F
(m)
ij =

F (m)

k(m)

[
A(m)R

(m)
ij +

2

3
(1−A(m))k(m)δij

]
(78)

where the A(m) coefficients depend also on the wave numbers range. These coefficients are expected
to go to unity at small wave numbers and to vanish at high wave numbers where the flow becomes

more isotropic. Obviously, the tensorial contraction of F
(m)
ij in equation (78) satisfies the condition

F (m) = 1
2F

(m)
ii . More information can be found in original papers of Schiestel [5, 34, 35].

5.3 The dissipative terms

The transport equations of the turbulent stress (45), (48) for one-point statistical models, statistical
multiple-scale models require the modeling of the dissipation rate tensor ǫij . Due to the fact that
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the dissipation rate tensor ǫij is usually assumed to be quasi-isotropic at high Reynolds number,
it is sufficient and more convenient to model the dissipation rate ǫ. The case of homogeneous
anisotropic flows is first considered. In full statistical modeling, the dissipation rate represents the
spectral flux computed for the splitting wave number κ1 = κd. This characteristic wave number is
the inverse of the macroscale related to the dissipation rate and the turbulent kinetic energy by a
relation of the type

κ1 = ζ1
ǫ

k3/2
, (79)

where the coefficient ζ1 is a numerical constant chosen such that κ1 is located after the inertial
range. Inserting the previous relation (79) into equation (80)

∂κ2
∂t

=
F(κ2)− F (κ2)

E(κ2)
(80)

which is deduced from equation (56), and considering also equation (46) for evaluating the deriva-
tive of the turbulent energy, yields the dissipation rate transport equation

∂ǫ

∂t
= cǫ1

ǫ

k
P − cǫ2

ǫ2

k
, (81)

where cǫ1 = 3/2 and

cǫ2 =
3

2
−

k

κ2E(κ2)

(
F(κ2)

ǫ
− 1

)
. (82)

These coefficients cǫ1 and cǫ2 are equal to the coefficients commonly used in one point statistical
closures. Reference [5] first proposed this alternative derivation of the ǫ equation where the dissi-
pation rate itself is interpreted as a spectral flux rather than a true viscous dissipation. In the case
of multiple-scale statistical models, a hierarchy of flux equation (77) is solved and the dissipation
rate is simply obtained by the flux out of the last spectral range. So, from equation (77), in the
particular case of two-equation multiscale models

dF (1)

dt
= C

(1)
1

F (1)P (1)

k(1)
+ C

(1)
3

(
F (1)

)2

k(1)
(83)

dǫ

dt
= C

(2)
1

ǫP (2)

k(2)
+ C

(2)
2

ǫF (1)

k(2)
+ C

(2)
3

ǫ2

k(2)
(84)

where F (2) = ǫ, ǫ(1) ≈ 0 and ǫ(2) ≈ 0.

5.4 The diffusive terms

The diffusion terms which appear in equation (48) for the turbulent stresses are modeled assuming
a gradient law as usually retained for the statistical model

J
(m)
ij =

∂

∂xk

(
ν
∂R

(m)
ij

∂xk
+ cs

k(m)

ǫ
R

(m)
kl

∂R
(m)
ij

∂xl

)
(85)
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where cs is a numerical coefficient. In the same approach, the diffusion term of the dissipation rate
Jǫ is also modeled by a general gradient hypothesis

J (m)
ǫ =

∂

∂xk

(
ν
∂ǫ

∂xk
+ cǫ

k(m)

ǫ
R

(m)
kl

∂ǫ

∂xl

)
. (86)

6 Transposition to subgrid-scale turbulence models

The approach in the case of large eddy simulations is somewhat different from the one proposed in
statistical modeling, but useful transpositions can be made with the previous formalism. In this
section, the point of view of the tangent homogeneous space at a point of the non-homogeneous
flow field must be still kept in mind. Large eddy simulations make use of filtering operation instead
of statistical averaging. It is of interest to remark that definition (2) is indeed a filter operating in
Fourier space. As usually made in large eddy simulations, the spectrum is then partitioned using
the cutoff wave number κ1 = κc introduced in the beginning of the inertial range of eddies. In very
large eddy simulations the cutoff may be located before the inertial range. Another wave number
κ2 = κd located at the end of the inertial range of the spectrum can also be used like previously
for convenience, assuming that the energy pertaining to higher wavenumbers is entirely negligible.
It is then possible to define the large scale fluctuations (resolved scales) u<i and the fine scales
(modeled scales) u>i through the relations

u<i =

∫

|κ|≤κc

û′i(κ) exp (jκξ) dκ (87)

u>i =

∫

|κ|≥κc

û′i(κ) exp (jκξ) dκ (88)

Then, the instantaneous velocity ui can be decomposed into a statistical part 〈ui〉, the large scale
fluctuating u<i and the small scale fluctuating u>i such that ui = 〈ui〉 + u<i + u>i . In the same
way, the filtered velocity ūi can be computed into its statistical part and its large scale fluctuating
such that ūi = 〈ui〉 + u<i . The velocity fluctuation u′i used in the decomposition ui = 〈ui〉 + u′i
contains the large-scale and small-scale fluctuating velocities, u′i = u<i + u>i . This particular filter,
as a spectral truncation, presents some interesting properties that are not possible with continuous
filters. In particular, it can be shown [34, 35] that large scale and small scale fluctuations are
uncorrelated 〈ϕ>ψ<〉 = 0 implying for instance the relations

Rij = 〈uiuj〉 − 〈ui〉 〈uj〉 =
〈
u′iu

′
j

〉
=
〈
u<i u

<
j

〉
+
〈
u>i u

>
j

〉
(89)

and
〈ūiūj〉 = 〈ui〉 〈uj〉+

〈
u<i u

<
j

〉
(90)

In the aim to transpose the statistical models to subgrid-scale models, it is useful to obtain first
some interesting relations between the subgrid and statistical stresses that can be deduced from
their transport equations in the physical space. Then, we show how the present formalism devel-
oped in the spectral space and particularly equation (35) is compatible with the usual transport
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equations of the subgrid-scale tensor in the physical space.

The transport equation of the mean statistical velocity is

∂ 〈ui〉

∂t
+

∂

∂xj

(
〈ui〉 〈uj〉

)
= −

1

ρ

∂ 〈p〉

∂xi
+ ν

∂2 〈ui〉

∂xj∂xj
−
∂Rij

∂xj
(91)

whereas the transport equation for the filtered Navier-Stokes equations takes the form

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −

1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂τ(ui, uj)

∂xj
(92)

in which, following Germano’s derivation [51], the subgrid scale tensor which is a function of the
velocities ui and uj is defined by the relation

τ(ui, uj) = uiuj − ūiūj (93)

The transport equations for the large scale fluctuation can also be derived easily and we obtain

∂u<i
∂t

+
∂

∂xj

(
ūiūj − 〈ui〉 〈uj〉

)
= −

1

ρ

∂p<

∂xi
+ ν

∂2u<i
∂xj∂xj

−
∂

∂xj
[τ(ui, uj)−Rij ] (94)

whereas the transport of the small-scale fluctuation is :

∂u>i
∂t

+
∂

∂xj

(
uiuj − ūiūj

)
= −

1

ρ

∂p>

∂xi
+ ν

∂2u>i
∂xj∂xj

+
∂τ(ui, uj)

∂xj
(95)

Obviously, they sum up to give the transport equation of the statistical fluctuating velocity

∂u′i
∂t

+
∂

∂xj

(
uiuj − 〈ui〉 〈uj〉

)
= −

1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

+
∂Rij

∂xj
(96)

The work of Germano shows that the form of the transport equations for the subgrid scale tensor
remain the same if they are written in terms of central moments, thus showing their generic
character. As shown in reference [51], the resulting equation is

∂τ(ui, uj)

∂t
+

∂

∂xk

[
τ(ui, uj)ūk

]
= −

∂τ(ui, uj , uk)

∂xk
+ ν

∂2τ(ui, uj)

∂xk∂xk

−
1

ρ

∂τ(p, ui)

∂xj
−

1

ρ

∂τ(p, uj)

∂xi
+ τ

(
p,
∂ui
∂xj

+
∂uj
∂xi

)
− 2ν τ

(
∂ui
∂xk

,
∂uj
∂xk

)

−τ(ui, uk)
∂ūj
∂xk

− τ(uj , uk)
∂ūi
∂xk

(97)

with the general definition
τ(f, g) = fg − f̄ ḡ (98)

and
τ(f, g, h) = fgh− f̄ τ(g, h) − ḡτ(h, f)− h̄τ(f, g)− f̄ ḡh̄ (99)
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for any turbulent quantities f , g, h. As a result of interest, it can be shown that the function τ
verifies the useful following properties

〈τ(f, g)〉 =
〈
f>g>

〉
(100)

and
〈τ(f, g, h)〉 =

〈
f>g>h>

〉
(101)

The transport equation for τ(ui, uj) can also be written in order to single out the role of the
statistical mean velocity

∂τ(ui, uj)

∂t
+ 〈uk〉

∂τ(ui, uj)

∂xk
= −

∂

∂xk

[
τ(ui, uj , uk) + τ(ui, uj)u

<
k

]
+ ν

∂2τ(ui, uj)

∂xk∂xk

−
1

ρ

∂τ(p, ui)

∂xj
−

1

ρ

∂τ(p, uj)

∂xi
+ τ

(
p,
∂ui
∂xj

+
∂uj
∂xi

)
− 2ν τ

(
∂ui
∂xk

,
∂uj
∂xk

)

−τ(ui, uk)
∂ 〈uj〉

∂xk
− τ(uj , uk)

∂ 〈ui〉

∂xk
− τ(ui, uk)

∂u<j
∂xk

− τ(uj , uk)
∂u<i
∂xk

(102)

The mean equations (58) and (59) pertaining to the wave number ranges [0, κ1], [κ1, κ2] can be

recovered by statistical averaging of the equation (102) taking into account that
〈
τ
(s)
ij

〉
= R

(2)
ij =

〈
u>i u

>
j

〉
and using the property (100). This equation reads

∂

∂t

〈
τ
(s)
ij

〉
+ 〈uk〉

∂

∂xk

〈
τ
(s)
ij

〉
= P

(2)
ij + F

(1)
ij − F

(2)
ij +Ψ

(2)
ij + J

(2)
ij (103)

where

P
(2)
ij = −

〈
τ
(s)
ik

〉 ∂ 〈uj〉
∂xk

−
〈
τ
(s)
jk

〉 ∂ 〈ui〉
∂xk

, (104)

F
(1)
ij = −

〈
τ
(s)
ik

∂u<j
∂xk

〉
−

〈
τ
(s)
jk

∂u<i
∂xk

〉
, (105)

F
(2)
ij = 2ν

〈
∂u>i
∂xk

∂u>j
∂xk

〉
≈ ǫij , (106)

Ψ
(2)
ij =

〈
p>

(
∂u>i
∂xj

+
∂u>j
∂xi

)〉
, (107)

J
(2)
ij = −

∂

∂xk

[ 〈
u>i u

>
j u

>
k

〉
+
〈
τ(ui, uj)u

<
k

〉 ]

−
1

ρ

∂

∂xj

〈
p>u>i

〉
−

1

ρ

∂

∂xi

〈
p>u>j

〉
+ ν

∂2

∂xk∂xk

〈
τ
(s)
ij

〉
(108)

Similarly, the resolved scale tensor can be defined by the relation

τ (r)(ui, uj) = ūiūj − 〈ui〉 〈uj〉 (109)
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with the property
〈
τ (r)(ui, uj)

〉
=
〈
u<i u

<
j

〉
. So that, one can remark that the Reynolds stress

tensor Rij can be computed by the sum of the statistical average of subgrid and resolved stresses
Rij =

〈
τ (s)(ui, uj)

〉
+
〈
τ (r)(ui, uj)

〉
. It is also possible then to determine the transport equation of

averaged resolved stress
〈
τ
(r)
ij

〉
= R

(1)
ij =

〈
u<i u

<
j

〉
and we obtain

∂

∂t

〈
τ
(r)
ij

〉
+ 〈uk〉

∂

∂xk

〈
τ
(r)
ij

〉
= P

(1)
ij − F

(1)
ij +Ψ

(1)
ij + J

(1)
ij − ǫ

(1)
ij (110)

where

P
(1)
ij = −

〈
τ
(r)
ik

〉 ∂ 〈uj〉
∂xk

−
〈
τ
(r)
jk

〉 ∂ 〈ui〉
∂xk

, (111)

F
(1)
ij = −

〈
τ
(s)
ik

∂u<j
∂xk

〉
−

〈
τ
(s)
jk

∂u<i
∂xk

〉
, (112)

Ψ
(1)
ij =

〈
p<

(
∂u<i
∂xj

+
∂u<j
∂xi

)〉
, (113)

J
(1)
ij = −

∂

∂xk

[ 〈
u<i u

<
j u

<
k

〉
−
〈
τ(ui, uj)u

<
k

〉 ]

−
1

ρ

∂

∂xj

〈
p<u<i

〉
−

1

ρ

∂

∂xi

〈
p<u<j

〉
+ ν

∂2

∂xk∂xk

〈
τ
(r)
ij

〉
, (114)

ǫ
(1)
ij = 2ν

〈
∂u<i
∂xk

∂u<j
∂xk

〉
≪ F

(2)
ij (115)

As previously mentioned, the mathematical formalism put in place in section 4.3, allows to recover
formally equation (103) as well as equation (110) which are now deduced from the spectral space.
In particular, equation (103) is formally identical to equation (59)

DR
(2)
ij

Dt
= P

(2)
ij + F

(1)
ij +Ψ

(2)
ij + J

(2)
ij − ǫij (116)

with the definitions

P
(2)
ij =

∫ κ2

κ1

Pij(X , κ)dκ = −R
(2)
ik

∂ 〈uj〉

∂xk
−R

(2)
jk

∂ 〈ui〉

∂xk
, (117)

F
(1)
ij = F

(1)
ij − ϕij(X , κ)

∂κ1
∂t

, (118)

F
(1)
ij = −

∫ κ1

0
Tij(X , κ)dκ, (119)

Ψ
(2)
ij =

∫ κ2

κ1

Πij(X, κ)dκ, (120)
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J
(2)
ij =

∫ κ2

κ1

Jij(X, κ)dκ. (121)

where ǫij ≈ F
(2)
ij . In contrast to multiple-scale models which require the modeling of the transfer

terms Fij in order to close the system equation, the term F
(1)
ij which appears in equation (116) is

directly computed when performing large eddy simulations. Indeed, using the relation

R
(2)
ik

∂ 〈ui〉

∂xk
=

〈
τ
(s)
ik

∂ 〈ui〉

∂xk

〉
(122)

and introducing the large-scale fluctuating velocity component, the production term in equation
(117) can be decomposed in the following way

P
(2)
ij = −

〈
τ
(s)
ik

∂ūj
∂xk

〉
−

〈
τ
(s)
jk

∂ūi
∂xk

〉
+

〈
τ
(s)
ik

∂u<j
∂xk

〉
+

〈
τ
(s)
jk

∂u<i
∂xk

〉
(123)

showing that

P
(2)
ij + F

(1)
ij = −

〈
τ
(s)
ik

∂ūj
∂xk

〉
−

〈
τ
(s)
jk

∂ūi
∂xk

〉
(124)

where F
(1)
ij in equation (124) is given by equation (105). Equation (105) shows that the spectral

flux F
(1)
ij at the cutoff wave number corresponds to the transfer process due to the action of large-

scale structures on the subgrid-scale turbulence. Taking into account equation (124), the transport
equation (116) of the subgrid turbulent stresses can be finally rewritten in the usual form

∂

∂t

〈
τ
(s)
ij

〉
+ 〈uk〉

∂

∂xk

〈
τ
(s)
ij

〉
= −

〈
τ
(s)
ik

∂ūj
∂xk

〉
−

〈
τ
(s)
jk

∂ūi
∂xk

〉
+Ψ

(2)
ij + J

(2)
ij − ǫij (125)

whereas equation of the subfilter energy is then obtained by tensor contraction of equation (125)

∂

∂t

〈
k(s)
〉
+ 〈uk〉

∂

∂xk

〈
k(s)
〉
= −

〈
τ
(s)
ij

∂ūi
∂xj

〉
+ J (2) − ǫ (126)

For LES , equations (97) will be solved in space and time. These equations are fluctuating and
have a similar form as equations (125) and (126). In this case, the convective term in equation
(125) is involving the filtered velocity instead of the mean statistical velocity. A part of this term

∂
(
u<k τ

(s)
ij

)
/∂xk is thus reported in turbulent diffusion terms. These fluctuating equations read

∂τ
(s)
ij

∂t
+ ūk

∂τ
(s)
ij

∂xk
= P

(s)
ij +Ψ

(s),(2)
ij + J

(s),(2)
ij − ǫ

(s)
ij (127)

where the (s) values denotes fluctuating instantaneous quantities and P
(s)
ij is the production term

defined by

P
(s)
ij = −τ

(s)
ik

∂ūj
∂xk

− τ
(s)
jk

∂ūi
∂xk

(128)
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The corresponding equation for subfilter energy reads

∂k(s)

∂t
+ ūk

∂k(s)

∂xk
= P (s) + J (s),(2) − ǫ(s) (129)

where P (s) = P
(s)
mm/2. Because of the properties in the Fourier space of the truncation filter, it

appears that the mean statistical and filtered equations can both be written in a similar form.
As a consequence, we shall assume that closures approximations used for the statistical partially
averaged equations also prevail in the case of large eddy numerical simulations. It is of interest to
note that the present formalism is in fact the essence of the partially integrated transport model
(PITM), first developed by Schiestel and Dejoan [16] for the transport equation (129) of the subgrid-

scale turbulent energy k(s) = 1
2τ

(s)
mm and by Chaouat and Schiestel [17] for the transport equation

(127) of the subgrid-scale turbulent stress tensor τ
(s)
ij . In the subfilter models, the redistribution

term Ψ
(s),(2)
ij which appears in equation (127) is also decomposed into a slow and a rapid part,

Ψ
(s),(2,1)
ij and Ψ

(s),(2,2)
ij in the subgrid-scale range. The slow term is modeled by a twofold hypothesis.

It first assumes that usual statistical Reynolds stress models must be recovered in the limit where
the cutoff wave number κ1 goes to zero and also that the return to isotropy is increased at higher
wave numbers [17], as adopted in multiple-scale models. So that we obtain the modeled terms as

Ψ
(s),(2,1)
ij = −c

(s)
1

ǫ(s)

k(s)

(
τ
(s)
ij −

1

3
τ (s)mmδij

)
(130)

and

Ψ
(s),(2,2)
ij = −c

(s)
2

(
P

(s)
ij −

2

3
P (s)
mmδij

)
(131)

and c
(s)
1 is now a continuous function of the cutoff wave number κ1 that defines the filter width. The

value of this coefficient has to be calibrated by reference to experiments (see for instance application
of partially integrated transport models in the remainder of the present paper). For LES or hybrid
RANS/LES approaches, the transport equation of the dissipation rate used in subfilter models is
somewhat different from equation (81). Considering the cutoff wave number κ1 = κc given by the
filter width, the splitting wave number κ2 is then determined by the dimensional relation

κ2 − κ1 = ζ1
ǫ〈

k(s)3/2
〉 (132)

where ζ1 is a coefficient which may be depended on the spectrum shape and on the Reynolds
number. Note that this relation is simply an application of equation (76) for a particular splitting
decomposition of the spectrum. The dissipation rate equation is then an adaptation of equation
(80). Taking into account equation (80) one can easily obtain

∂ǫ(s)

∂t
= c(s)ǫ1

ǫ

k(s)
P (s) − c(s)ǫ2

(
ǫ(s)
)2

k(s)
(133)

where c
(s)
ǫ1 = 3/2 and

c(s)ǫ2 =
3

2
−

〈
k(s)
〉

κ2E(κ2)

(
F(κ2)

ǫ
− 1

)
(134)
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setting κ2 ≫ κ1, and E(κ2) ≪ E(κ1). Equations (82) and (134) show that the coefficients c
(s)
ǫ2

and cǫ2 are functions of the spectrum shape. We emphasize that if the usual ǫ equation (81)
and equation (133) derived from reasoning in the subgrid range are formally different, it appears
however that the statistical average of ǫ(s) is the usual dissipation rate,

〈
ǫ(s)
〉
= ǫ. Remark also

that we have used a reasoning based on statistical spectra, like in multiple scale models, considering
that the dissipation rate equation is largely intuitive in its derivation. In practice, comparison of

equation (82) and (134) provides a more convenient form of the coefficient c
(s)
ǫ2 such as ([16]):

c(s)ǫ2 = cǫ1 +

〈
k(s)
〉

k
(cǫ2 − cǫ1) (135)

The function k(s)/k which appears in equation (135) is then calibrated in an equilibrium situation
by referring to a universal spectrum distribution compatible with the Kolmogorov law in the inertial
wave number range in nearly equilibrium flows. Practical formulations can be devised in the form

c(s)ǫ2 = c(s)ǫ2 (η) (136)

where η = κ1k
3/2/ǫ with the limiting behavior

〈
k(s)
〉

k
=

3

2
CKη

− 2

3 (137)

at large wave numbers where CK is the Kolmogorov constant. This behavior is in agreement with
the work of Rubinstein and Zhou [52, 53] who derive the ǫ equation from analytical models and
exploring also the limits of the standard ǫ equation when high unsteadiness is imposed [54]. For
nonhomogeneous flows, the diffusion term Jǫ is also embedded into equations (81) and (133).

With the tangent homogeneous space in mind, let us remark finally that when very large filter
widths are used, the filter width has to be dissociated from the grid itself, because the grid must
always be fine enough to capture the mean flow non-homogeneities.

7 Application of multiple-scale RANS models

7.1 Two and three-scale stress model Rij − F

For usual applications, the two-scale models are developed considering two splitting wave numbers
[5, 45]. In that case, the numerical system to be solved is composed of the transport equations

of the partial Reynolds stresses R
(1)
ij , R

(2)
ij , the partial turbulent kinetic energies k(1), k(2), and

the spectral fluxes F (1), F (2) where F (2) = ǫ. The coefficients c
(m)
1 and c

(m)
2 are calibrated on

homogeneous flows using direct numerical simulations [55] that determine the spectral behavior

of the pressure-strain correlations. In practice, the numerical constants retained are c
(1)
1 = 1.20,

c
(2)
1 = 4.00, c

(m)
2 = 0.5 (m=1,2). Three scale-models are also considered as an extension of two-scale

models. The numerical system is then composed of the variable set R
(1)
ij , R

(2)
ij , R

(3)
ij , k(1), k(2), k(3),

F (1), F (2), F (3) where F (3) = ǫ. In this case the numerical constants are c
(1)
1 = 1.05, c

(2)
1 = 1.80,
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c
(3)
1 = 8.00, c

(m)
2 = 0.5 (m=1,2,3). More advances multiple-scale models are straightforward to

settle following the mathematical formalism already developed. Note that the scope of applications
of multiple-scale models is mainly devoted to turbulent flows that are out of equilibrium.

7.2 Axisymmetric contraction

This is a typical example. The experiment on the axisymmetric contraction of grid turbulence
worked out by Uberoi and Wallis [56] has been considered for analyzing the two-scale model [5] in
its capabilities to predict flows which present non-equilibrium spectra. In this experiment, initial
fluid particles that are convected into a channel are subjected to a sudden contraction. Both
experimental and numerical evolutions of the ratio

〈
u′21
〉
/
〈
u′22
〉
in the axisymmetric contraction

duct are described in Figure 1. From the measurements, it can be seen that the ratio
〈
u′21
〉
/
〈
u′22
〉

produced by the grid is of order 1.4 and returns to unity through the contraction. Somewhat
surprisingly, the ratio monotonically continues increasing in the downstream straight duct section
to its pre-contraction value. This is an interesting paradox which can be explained if working in
the spectral space. In the initial flow located upstream the contraction, it can be assumed that the
anisotropy is mainly concentrated in the large scales of motions. As expected, the axisymmetric
contraction reduces the flow anisotropy because of the rapid deformation due to the mean flow and
produces quasi identical normal stresses. But one have to keep in mind that the spectral sharing
out between the small and large scale is different for each normal stress component and anisotropy
still remains at the spectral level (large scale and small scale anisotropies are just compensating).
When passing after the contraction to a straight section, the small scale motions return more
rapidly to isotropy than the large scales. So that this phenomena reveals in fact the anisotropy of
the large scale that was temporarily hidden by the small scales before the contraction. As a result
of interest, Schiestel’s computation [5] indicates that the two-scale model succeeds in reproducing
this paradoxical phenomenon which consists in a “return to anisotropy ”, contrary to single-scale
models which cannot reproduce this behavior. Even more advanced single-scale models cannot
reproduce this behavior because they always state that Ψij goes to zero when the anisotropy
tensor vanishes aij = 0. The simple reason being that an isotropic Reynolds stress tensor does
not mean isotropic turbulence, the anisotropy may be distributed among spectral wavenumbers.
Indeed, one-scale modeling using the Rotta’s hypothesis or higher order approximations cannot
account for spectral information, and consequently cannot spontaneous “return to anisotropy ”,
from an isotropy state of the Reynolds stresses. This dual feature of relaxation of the large scales
and the small scales was recognized by Lee and Reynolds [57] in their numerical simulations of
homogeneous turbulence from irrotational strains. They indeed found overshoot phenomena that
the authors explained qualitatively by the fact that in the initial period of relaxation, the small
scales relax rapidly, while the large scale anisotropy overshoots or relaxes at a slow rate, depending
on the strain history of the initial field.

7.3 Decay of isotropic turbulence with perturbed initial spectrum

The decay of isotropic turbulence is often studied for analyzing the performances of turbulence
models or calibrating numerical coefficients. Usually, nearly equilibrium distribution are consid-
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ered. The measurements of Comte-Bellot and Corrsin [58] is generally chosen as an experimental
reference. In the initial region of decay, the turbulence energy is found to verify a power law
k/k0 = t−n with n=1.28. In the present case, we consider an initial spectrum which is artificially
perturbed by modification of energy levels departing from usual equilibrium spectra. The aim is
to study the influence of initial spectral distribution on the decay law as an illustration of out
of spectral equilibrium situations. Figure 2 describes the evolutions of the the ratio

〈
u′21
〉
/
〈
u′22
〉

versus time (the quantity U denotes the mean convective velocity and M is the mesh size in the
experiment) for an unperturbed initial spectrum denoted B and two perturbed initial spectra de-
noted A and C. The spectra are modified, respectively, by decreasing the large scale energy (A) or
increasing the large scale energy (C). For the unperturbed spectrum, the decay law given by the

standard k − ǫ model according the relation k/k0 = t
1

1−cǫ2 that leads the slope of decay close to
n=1.11 if considering the usual value cǫ2 = 1.90. This value obtained from a consensus on several
experiments is somewhat lower than Comte-Bellot’s value, but has no consequence for the present
purpose. The computation performed with the two-scale stress model [59] indicates that a peak
in large scale energy (resp. a defect in large scale energy) implies a decrease (resp. an increase) of
the decay rate of turbulence. These results are found to be in qualitative agreement with EDQNM
spectral models predictions by Cambon et al. [21]. As for the previous test case, this turbu-
lence spectral effect due to departure from equilibrium cannot be reproduced using single-scale
turbulence models.

8 Application of partially integrated transport models

(PITM) for LES and hybrid models

8.1 Pulsed turbulent channel flow

A partially integrated transport model based on equation (129) for the subfilter turbulent kinetic
energy and equation (133) for the dissipation rate has been developed by Schiestel and Dejoan [16]
for LES simulations of unsteady flows on coarse grids which present non-equilibrium turbulence
spectrum. When coarse grids are used, the cutoff wave number can be located before the inertial
zone and the modeled part of the spectrum includes non universal energetic eddies. In this new
formulation, the characteristic length scale of subfilter turbulence is not given by the spatial mesh
discretization step size but is computed by the dissipation rate equation. This method enables to
bridge RANS models and LES methods in a continuous way without interface as in usual zonal
hybrid models. The formalism is compatible with the two extreme limits that are on one hand
the DNS and on the other hand the statistical k − ǫ model of Launder and Sharma [60]. The
channel flow subjected to a periodic forcing produced by a superimposed sinusoidal longitudinal
mean pressure gradient like in the experiment of Binder and Kunéy [61], Tardu and Binder [62] has
been considered for illustrating the potentials of the model. Depending of the imposed frequency
of oscillations of the mean pressure gradient in the channel, the experimental results have exhibited
strong lag effects between the modulation of the turbulent stress and the forcing. LES simulation
has been performed on relatively coarse grid (32×64×62) in the streamwise, spanwise and normal
directions to the wall respectively. As shown in the original paper by Schiestel and Dejoan [16],
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the main result of interest is that the time delay of the turbulent intensity relative to the forcing
was much better predicted by the two-equation PITM model than by the Smagorinsky model.

8.2 Injection induced turbulent channel flows

In the framework of PITM models, Chaouat and Schiestel [17, 18] have developed a more advanced
subgrid-model based on transport equations (127) for the subfilter stresses and equation (133) for
the dissipation rate. This model embodies the same basic concepts as the two equation subfilter

model [16] but takes into account all the transport equations of the stress components R
(s)
ij . This

allows a more realistic description of the flow anisotropy than eddy viscosity models and takes
into account more precisely the turbulent processes of production, transfer, pressure redistribution
effects and dissipation. Moreover, some backscatter effects can possibly arise. Like his companion
two equation model, the present model has been developed in order to remain consistent when
the cutoff is varied between the two extreme limits corresponding on one side of the spectrum to
full statistical RSM model of Launder and Shima [63] and on the other side to DNS (the model
becomes useless in this case). This modeling strategy is motivated by the idea that the recognized
advantages of usual second order closures (RSM) [7, 8] are worth to be transposed to subgrid-scale
modeling when the SGS part is not small compared to the resolved part. The application to the
channel flow with wall mass injection which undergoes the development of natural unsteadiness with
a transition process from laminar to turbulent regime is considered for illustrating the potentials of
the model. This case is of central interest for engineering applications in solid rocket motors (SRM)
as mentioned by instance by Gany and Aharon [64] or Chaouat and Schiestel [65]. Figure 3 shows
the schematic of channel flow with fluid injection. The dimensions of the length, height and width
channel are respectively 58.1 cm, 2.06 cm and 1.03 cm. The present large eddy simulation has been
performed on a medium grid (400×44×80) in the streamwise, spanwise and normal directions to the
wall. Note that a more conventional approach using detached eddy simulation (DES) commonly
applied in engineering applications or the dynamic model [66] requires a more refined grid for
computing accurately this type of flow [67]. In particular, a strong decrease in the number of grid
points has been obtained (64 %) in regard with the LES simulation of Apte and Yang [68] for an
almost similar computational domain, because of the present PITM model that is well suited for
simulating flows on coarse grids. In this study, the viscosity and turbulent stress profiles produced
by the present LES simulation [17] as well as the RANS computation using a variant RSM model of
Launder and Shima [63, 69] have been compared with the experimental data worked out by Avalon
et al. [70] that describes injection induced flow in the specific setup at ONERA. Figure 4 shows
the velocity profiles 〈u1〉 /um normalized by the bulk velocity um in two locations of the channel
at x1 = 22 cm and 57 cm where the flow regimes are respectively laminar and then turbulent. It
appears that the RMS computation as well as the LES simulation produce velocity profiles that
agree rather well with the experimental data. Figure 5 describes the streamwise turbulent stresses
〈u′1u

′
1〉 /um in different stations of the channel at x1 = 40 cm, 45, 50 and 57 cm. As a result of

interest, one can observe that both the RSM computation and the LES simulation reasonably well
predict the turbulence intensity of the flow in the downstream transition location where the flow
presents a turbulent regime, except however in the immediate vicinity of the wall region. Differences
between the RSM and LES stress results should probably due to the triggering of the transition
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which not occurs in the same location of the channel. Therefore, it appears that the mean flow
variables such that the velocities and stresses can be accurately computed both by RANS and LES
approaches although the turbulence modeling is quite different. But contrary to full statistical
modeling, only LES simulation is able to provide the structural information of the flow. Figure
(6) shows the isosurfaces of the instantaneous spanwise filtered vorticity ω̄2 = ∂ū3/∂x1 − ∂ū1/∂x3
in the channel and reveals the detail of the flow structures subjected to mass injection. In the
first part of the channel where the flow is laminar, the isosurfaces form a parallel plane up to
the injection surface. Then, the isosurfaces show the presence of roll-up vortex structures in the
spanwise direction indicating the transitional and turbulent flow regime. Moreover, because of the
injection, the three-dimensional structures are squeezed upward in the normal direction to the axial
flow. In spite of the coarse grid computation, it is remarkable that the present LES calculation
succeeded to obtain a good qualitative prediction of these structures that are quite similar to those
simulated by Apte and Yang [68].

9 Conclusion

While many modeling approaches have been developed often independently up to now, a theoretical
formalism that allows transposition of turbulence modeling closures from RANS to LES has been
presented. We show that a full or partial integration over the wave numbers of the dynamic
equation of the spectral velocity correlation tensor allows to recover respectively usual one-point
statistical closures, statistical multiple-scale models as well as subfilter transport models used for
LES (using PITM). The proposed approach makes use of the concept of tangent homogeneous field,
considered as deriving from the first term in the Taylor development of local mean velocity field.
Higher order approximations bring much complexities and have not been considered here. The use
of the statistical filter leads to a three term decomposition of the turbulence field introducing a
mean value, a large scale fluctuation and a fine grained fluctuation. The equations obtained for
statistical multiple scale transport models are exact for homogeneous anisotropic turbulence and
when the filter width goes to infinity (∆ → ∞, κc → 0 and U → 〈U〉), the filtered field goes to
the statistical mean field. This property is lost in non homogeneous fields but it can be formally
preserved, at least formally, if the concept of homogeneous tangent space is used. In the case of
LES, the same statistical filter can be used to derive transport equation that have the same form
as in statistical multiscale. For LES of non homogeneous flows, an approximate approach consists
in supplementing additional diffusion terms to the homogeneous model. In the homogeneous case,
the formalism for multiple scale statistical models and the PITM formalism will coincide. Modeling
of the pressure-strain correlation, transfer, dissipation and diffusion terms for each type of model
have been also presented and discussed by reference to physical behaviors. In particular, emphasis
has been put on the transfer and dissipative terms that can be indeed interpreted as spectral fluxes.
Then, typical experiments that describe flow situations with significant non equilibrium spectrum
have been considered for illustrating some potentials of these models. The main insight of the
present formalism developed in the spectral space is therefore to bridge URANS models and LES
simulations from a theoretical point of view showing a promising route of new future developments
in hybrid models with seamless coupling that can be done in this framework.

27



A Appendix : Analytical integration for spectral ten-

sor terms

Integration of the different terms defined in paragraph 4.1 can be performed using the reciprocal
change in variables. Indeed, considering the vector difference ξm = xmB − xmA and the midway
position Xm = 1

2 (xmA + xmB), the reciprocal variables are then defined as xmA = Xm − 1
2ξm and

xmB = Xm + 1
2ξm. Full integrations in the spectral space of the quantities Πij , Eij and Jij that

appear in equation (35) require the calculation of first and second spatial derivatives with respect
the distance ξm as well as the limiting condition when ξm goes to zero. Using the above change of
variables, it is a straightforward matter to show that the first and second derivatives are expressed
in the following way

∂

∂ξm
=

1

2

(
∂

∂xmB
−

∂

∂xmA

)
, (138)

and
∂2

∂ξm∂ξm
=

1

4

(
∂2

∂xmA∂xmA
− 2

∂2

∂xmA∂xmB
+

∂2

∂xmB∂xmB

)
. (139)

When applying relation (139) for the turbulent Reynolds stress τij =
〈
u′iAu

′
jB

〉
(xmA, xmB), one

have to keep in mind that the fluctuation u′jB is treated as a function of xmB only. This procedure

allows the computation of the first derivative ∂
〈
u′iAu

′
jB

〉
/∂ξ as well as the second derivative

∂2
〈
u′iAu

′
jB

〉
/∂ξ2 and we obtain



∂
〈
u′iAu

′
jB

〉

∂ξm



ξm=0

=
1

2

[〈
u′i
∂u′j
∂xm

〉
−

〈
u′j
∂u′i
∂xm

〉]
, (140)



∂2
〈
u′iAu

′
jB

〉

∂ξm∂ξm



ξm=0

=
1

4

∂2
〈
u′iu

′
j

〉

∂xm∂xm
−

〈
∂u′i
∂xm

∂u′j
∂xm

〉
(141)

with xm = xmA = xmB and
∂u′iA
∂xmA

=
∂u′iB
∂xmB

=
∂u′i
∂xm

. (142)

The first derivative ∂/∂Xm is computed by

∂

∂Xm
=

(
∂

∂xmA
+

∂

∂xmB

)
, (143)

that implies in particular 

∂
〈
u′iAu

′
jB

〉

∂Xm



ξ=0

=
∂
〈
u′iu

′
j

〉

∂xm
(144)
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and 

∂2
〈
u′iAu

′
jB

〉

∂Xm∂Xm



ξ=0

=
∂2
〈
u′iu

′
j

〉

∂xm∂xm
. (145)

A.1 Pressure-strain fluctuating correlations term

The pressure-strain correlation tensor is defined by

Ψij =

∫ ∞

0

[
1

ρ

(
∂

∂ξi

〈
p′Au

′
jB

〉
−

∂

∂ξj

〈
p′Bu

′
jA

〉)
+

1

2ρ

(
∂

∂Xi

〈
p′Au

′
jB

〉
+

∂

∂Xj

〈
p′Bu

′
iA

〉)]∆

ξm=0

dκ.

(146)
Using relations (138) and (143), equation (146) can be developed and the resulting equation is

Ψij =

〈
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
. (147)

A.2 Dissipation rate

The dissipation tensor is defined by

ǫij =

∫ ∞

0

[
ν

2

∂2ϕij

∂XlXl
+ 2νκ2mϕij

]

ξm=0

dκ. (148)

So that

ǫij =
ν

2

(
∂2Rij

∂XlXl

)

ξm=0

− 2ν

[
∂2Rij

∂ξm∂ξm

]

ξm=0

. (149)

Using the derivative relations (141), (144) and (145), the terms of the right-hand side of equation
(149) are computed easily leading the expected result obtained in one-point closure

ǫij = 2ν

〈
∂u′i
∂xm

∂u′j
∂xm

〉
. (150)

A.3 Diffusion term

The diffusion term Jij is defined by the expression

Jij =

∫ ∞

0

[
−
1

ρ

(
∂

∂Xi

〈
p′u′jB

〉
+

∂

∂Xj

〈
p′u′iA

〉)∆
]

ξm=0

dκ

+

∫ ∞

0

[
−
1

2

∂

∂Xk

(〈
u′iAu

′
kB
u′jB
〉∆

+
〈
u′iAu

′
kA
u′jB
〉∆)

+ ν
∂2ϕij

∂XlXl

]

ξm=0

dκ. (151)

As for the previous calculus, using (144) and (145) provides the well known result

Jij = −
1

ρ

(
∂

∂xi

〈
p′u′j

〉
+

∂

∂xj

〈
p′u′i

〉)
−

∂

∂xk

〈
u′iu

′
ju

′
k

〉
+ ν

∂2Rij

∂xlxl
. (152)
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A.4 Transfer term

The total transfer term Tij is defined by

Tij = −

∫ ∞

0

[(
∂

∂ξk

[〈
u′iAu

′
kB
u′jB
〉
−
〈
u′iAu

′
kA
u′jB
〉])∆

+

(
ξm
∂Rij

∂ξk

)∆ ∂ 〈uk〉

∂Xm

]

ξm=0

dκ. (153)

Obviously, the transfer term Tij is reduced to zero for ξm = 0 when points A and B go to the
midway position Xm.
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and O. Métais, 2006.

[19] M. Germano. From RANS to DNS: Toward a bridging model. In Direct and Large-Eddy
simulation III, Ercoftac Series, Vol. 7, Ed. Kluwer Academic Publishers by P. Voke, N. D.
Sandham and L. Kleiser, pp. 225-235, 1999.

[20] K. Hanjalic, M. Hadziabdic, M. Temmerman, and M. Leschziner. Merging LES and RANS

Strategies: Zonal or Seamless Coupling ? In Direct and Large-Eddy simulation V, Ercoftac
Series Vol. 9, Ed. Kluwer, Dordrecht by R. Friedrich, B. Geurts and O. Métais, pp. 451-464,
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List of Figure Captions

Figure 1: Evolution of the ratio
〈
u′21
〉
/
〈
u′22
〉
in the Uberoi and Wallis experiment [56] compared

to numerical prediction [5].
Figure 2: Isotropic decay of the turbulent kinetic energy in the Comte-Bellot and Corrsin experi-
ment [58] compared to numerical prediction [59].
Figure 3: Schematic of channel flow with fluid injection of Vecla setup.
Figure 4: Mean velocity profiles normalized by the bulk velocity 〈u1〉 /um in different cross sections
(a) x1 = 22 cm; (b) 57 cm; · · · : RSM computations [69]; - - -: LES simulation [17]; ◦: experimental
data [70].

Figure 5: Streamwise turbulent stresses 〈u′1u
′
1〉

1/2 /um in different cross sections (a) x1 = 40 cm;
(b) 45 cm; (c) 50 cm; (d) 57 cm. · · · : RSM computations [69]; - - -: LES simulation [17]; ◦:
experimental data [70].
Figure 6: Isosurfaces of instantaneous filtered vorticity vector ω̄i = ǫijk∂ūk/∂xj in the spanwise
direction |ω̄2| = 3000 (1/s). LES simulation [17]. Experimental cold flow setup of Avalon [70].
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Figure 1: Evolution of the ratio 〈u′2
1 〉 / 〈u

′2
2 〉 in the Uberoi and Wallis experiment [56] compared to

numerical prediction [5].
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Figure 2: Isotropic decay of the turbulent kinetic energy in the Comte-Bellot and Corrsin experiment
[58] compared to numerical prediction [59].
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Figure 3: Schematic of channel flow with fluid injection
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Figure 4: mean velocity profiles normalized by the bulk velocity 〈u1〉 /um in different cross sections (a)
x1 = 22 cm; (b) 57 cm; · · · : RSM computations [69]; - - -: LES simulation [17]; ◦: experimental data
[70].
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Figure 5: Streamwise turbulent stresses 〈u′
1u

′
1〉

1/2 /um in different cross sections (a) x1 = 40 cm; (b) 45
cm; (c) 50 cm; (d) 57 cm. · · · : RSM computations [69]; - - -: LES simulation [17]; ◦: experimental data
[70].
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Figure 6: Isosurfaces of instantaneous filtered vorticity vector ω̄i = ǫijk∂ūk/∂xj in the spanwise direction
(i=2) |ω̄2| = 3000 (1/s). LES simulation [17]. Experimental cold flow setup of Avalon [70].
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