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Abstract

The partially integrated transport modelling (PITM) method can be viewed as a continuous
approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and
the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations
depending on the varying spectral cutoff location [42, 8]. The PITM method can be applied to
almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM
version based on the transport equations for the turbulent Reynolds stresses together with the
dissipation transport rate equation is now developed in a general formulation based on a new
accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to
calibrate more precisely the csgsǫ2 function involved in the subgrid dissipation rate ǫsgs transport
equation. The model is also proposed here in an extended form which remains valid in low Reynolds
number turbulent flows. This is achieved by considering a characteristic turbulence length scale
based on the total turbulent energy and the total dissipation rate taking into account the subgrid
and resolved parts of the dissipation rate. These improvements allow to consider a large range
of flows including various free flows as well as bounded flows. The present model is first tested
on the decay of homogeneous isotropic turbulence by referring to the well known experiment of
Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy
are considered for analysing the model capabilities in strong non-equilibrium flow situations. The
second test case is the classical fully turbulent channel flow that allows to assess the performance
of the model in non homogeneous flows characterised by important anisotropy effects. Different
simulations are performed on coarse and refined meshes for checking the grid independence of
solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A
special attention is devoted to the sharing out of the energy between the subgrid-scales and the
resolved scales. Both the mean velocity and the turbulent stress computations are compared with
data from direct numerical simulations.
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1 Introduction

Mathematical turbulence modelling methods such as Reynolds Averaged Navier-Stokes (RANS)
methods or Large Eddy Simulations (LES) methods have made significant progress in the past
decade for predicting aerodynamic flows and a huge variety of methods has been proposed [40].
Generally, advanced RANS models such as new generation Reynolds Stress Models (RSM) or Al-
gebraic Reynolds Stress Models (ARSM) [26, 48] appear to be well suited for tackling engineering
flows and for instance flows encountered in space propulsion [5, 7] and aeronautical applications
involving strong effects of streamline curvature [24], flow separation in airfoil problems [37, 6, 27],
rotating flows [4], adverse pressure gradient boundary layers whereas LES methods using subgrid
scale models such as for instance the dynamic model [19] or the structure model [32] are success-
fully applied for simulating academic flows with emphasis on fundamental aspects and structural
aspects, together with statistical post-analysis based on two-point correlations and spectral prop-
erties. The current trends in turbulence modelling using these approaches, have been recently
reviewed by Gatski et al. for turbulent aerodynamic flows [17] and by Lesieur and Métais [28] for
large eddy simulations, pointing out their respective advantages and drawbacks. Although these
methods are very useful, each of them has its own specific field of application. It appears for
instance that statistical RANS models are not well suited for studying unsteady flows when they
are subjected to a large range of frequencies that can interact with the turbulence time scales. On
the other hand, large eddy simulations are not always accurate when they are performed on coarse
grids since an appreciable part of the subgrid-scale turbulence needs to be modelled and this is
generally made using a simple closure only valid for fine grained turbulence, and rarely by using
a transport equation. This situation occurs when the cutoff wavenumber may be located before
the inertial range. Moreover, large eddy simulations require very large computing time and this
is not always affordable in industrial applications, even with the rapid increase in computer speed
[31]. For these reasons, hybrid RANS/LES zonal methods, capable of reproducing a RANS-type
behaviour in the vicinity of a solid boundary and an LES-type behaviour far away from the wall
boundary have been developed in the last decade [45]. Among these methods, the detached eddy
simulation (DES) developed by Spalart and Allmaras [46], where the model is switching from a
RANS behaviour to an LES behaviour depending on a criteria based on the turbulent length-scale
is the most used model. It is often applied in aeronautical industries. Some other RANS/LES
zonal methods have also been developed in this framework but they rely on two different models,
a RANS model and a subgrid-scale model, which are applied in different domains separated by an
interface [22, 49, 50]. These zonal methods allow an appreciable saving of CPU time because only
a particular region of the flow has to be solved using a refined mesh to describe the turbulence
field. Noticeably, the main shortcoming of these methods lies in the connection interface between
the RANS and LES regions. The interface is empirically set inside the computational domain and
the turbulence closure changes from one model to another one without continuity when crossing
the interface. These methods often require an internal forcing produced by artificial instantaneous
random fluctuations for restoring continuity at the crossflow between these domains. These prac-
tices may be necessary in order to get the correct velocity and stress profiles in the boundary layer
[13].
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To get rid of interface problems, the partially integrated transport modelling (PITM) approach
for the subgrid turbulence quantities has been developed by Schiestel and Dejoan for the energy
subfilter model [42] and by Chaouat and Schiestel for the stress subfilter model [8]. It can be viewed
as a continuous non-zonal hybrid RANS/LES method with seamless coupling. It bridges two dif-
ferent levels of description in a consistent way based on the spectral theoretical PITM methodology
[23, 9] and then allows to transpose the advantages of advanced RANS modelling such as Reynolds
stress models to LES simulations. Thus, it gains major interest on the fundamental point of view
because it allows some unifying formalism that conciliates RANS and LES approaches. In par-
ticular, the subfilter model based on the transport equations for the subfilter stresses and the
dissipation rate appears to be nicely appropriate for simulating unsteady flow regimes with a high
resolution of the turbulence anisotropy [8, 9]. In regard with academic LES simulations which
require that the spectral cutoff is located within the inertial range, the PITM models allow to
perform flow simulations on relatively coarse grids since the cutoff wavenumber can be located
almost anywhere inside the spectrum. In that case, an important part of the subgrid-scale energy
is modelled using the second order closure method whereas the large scales are resolved by the
numerical scheme. Then, the total stresses are computed as the sum of the subgrid and large
scale parts. In the present approach, the dissipation rate is computed from the modelled transport
equation for the spectral flux. The theory shows that the coefficients are no longer constants but
must be a function of the cutoff wavenumber. This constitutes the main feature of the PITM
method. As a result, the PITM method appears well suited for simulating non-equilibrium flows
with departures from the standard Kolmogorov law.

From a physical point of view, the PITM approach finds its basic foundation in the spectral
space by considering the Fourier transform of the two-point fluctuating velocity correlation equa-
tions in homogeneous turbulence. The extension to non-homogeneous turbulence can be developed
easily within the approximate framework of the tangent homogeneous space [9]. Moreover, the
transport equation of the spectral velocity correlation tensor in wave vector space allows to char-
acterise each physical process such as production, redistribution, transfer, diffusion and dissipation
acting in spectral zones. The dissipation rate is then interpreted as a spectral flux of energy
transferred from large eddies to small eddies by the inertial cascade down to the last slice of the
spectrum. This spectral equation is the cornerstone of the PITM method.

The present paper presents the main features and the basic hypotheses in the PITM method
that allows transposition of turbulence models from RANS to LES. New developments that extend
the previous energy and stress subfilter models [8] to a larger range of flows are then presented
and discussed in details. The model is mainly dedicated to the study of nonstandard spectral
distribution with departures from the standard Kolmogorov distribution and the improvements
presented here allow to consider low Reynolds number flows. The subfilter models will be developed
in a more general formulation based on a new energy spectrum function E(κ) valid throughout
the entire spectrum. Consequently, a more accurate calibration of the csgsǫ2 function coefficient
involved in the transport equation for the subgrid dissipation rate [8] is possible. The model will
be also proposed in an extended approach that can be applied to a larger range of flows considering
that the turbulence length scale Le is built on the total turbulent energy k and the total dissipation
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rate ǫ, including both the subgrid scale dissipation rate ǫsgs and the resolved scale dissipation rate
rate ǫ<, leading thus to the relation Le = k3/2/(〈ǫsgs〉+〈ǫ<〉). Thus, the model can be developed in
a low Reynolds number version capable of reproducing the dissipative effects in the resolved range
of eddies. The model is first tested on the decay of homogeneous isotropic turbulence referring to
the experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a
defect of energy are considered in order to analyse the capabilities of the model in non-equilibrium
flow situations. The second test case is the well known fully developed turbulent channel flow
that allows to assess the performance of the model in non homogeneous flows, and especially, its
capability to reproduce the flow anisotropy, even for LES simulations performed on coarse grids.
The simulations are performed on two different meshes for checking the grid independence of the
solutions as well as the consistency of the subgrid-scale model when the filter width is changed.

2 PITM approach to subgrid-scale turbulence models

2.1 The filtering and averaging processes

Reynolds averaged Navier-Stokes method assumes that each variable φ can be decomposed into an
ensemble average part 〈φ〉 and a fluctuating part that embodies all the turbulent scales φ′ such as
φ = 〈φ〉+φ′. So, the turbulence closure then consists in modelling the energy spectrum as a whole.
In practice, the Reynolds averaging is often obtained by using time averaging over a sufficiently
long period in comparison with the turbulent time scale. On the contrary, the large eddy simulation
method consists in modelling only the small scales of turbulence which are more universal whereas
the large scales are resolved explicitly by the numerical scheme. In that situation, the spectrum is
thus partitioned into two zones delimited by the cutoff wavenumber κc, usually defined from the
grid size ∆, κc = π/∆. In the present PITM approach, another wavenumber κd located at the far
end of the inertial range of the spectrum is also introduced, assuming that the energy pertaining to
higher wavenumbers is entirely negligible. The use of the dissipative wavenumber κd comes from
the multiple scale modelling [38] in which this spectral splitting avoids to consider infinite limits
and molecular viscosity effects in the far end of the spectrum. In this framework, the instantaneous
variable φ is then decomposed into a filtered part φ̄ and a small scale modelled part φ> such that
φ = φ̄+ φ>. The instantaneous fluctuation φ′ contains in fact the large scale fluctuating part φ<

and the small scale fluctuating part φ> such that φ′ = φ< + φ>. The instantaneous variable φ
can then be rewritten like the sum of a mean statistical part 〈φ〉, a large scale fluctuating part
φ< and a small scale fluctuating part φ> as follows φ = 〈φ〉 + φ< + φ>. The first two terms
correspond to the filtered velocity φ̄ = 〈φ〉 + φ< implying that the large scale fluctuating part is
simply the difference between the filtered and the statistical quantities, φ< = φ̄− 〈φ〉. In fact, the
large scale fluctuations (resolved scales) and the fine scales fluctuations(modelled scales) can be
naturally defined from the physical meaning of the Fourier transform of the fluctuating quantities φ′

using the cutoff wavenumber κc as the lower bound of the integration interval. Indeed, if working in
spectral space, the large scale φ< and the fine scale φ> are then defined from the Fourier transforms
:

φ< =

∫

|κ|≤κc

φ̂′(X ,κ) exp (jκξ) dκ (1)
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φ> =

∫

|κ|≥κc

φ̂′(X ,κ) exp (jκξ) dκ (2)

At this step, the question now is to show the connection that may exist between the filtered and
statistical mean value: does a filtered quantity goes to the statistical mean when the filter width
goes to infinity? This is obvious in homogeneous turbulence, considering the previous formula. But
for non-homogeneous turbulence, which is indeed the usual case, it is necessary then to consider
the concept of tangent homogeneous space at a point of a non-homogeneous flow field assuming
Taylor series expansion in space for the mean velocity field [9, 41]. Indeed, this concept ensures
that the filtered field goes to the statistical mean field when the filter width goes to infinity
(∆ → ∞, κc → 0 and φ → 〈φ〉). In particular, when the cutoff vanishes, the full integration in
the tangent homogeneous space exactly corresponds to the statistical mean, that guarantees exact
compatibility with RANS equations [9]. We insist on the fact that integration is performed in
the tangent homogeneous space and not in the real space itself. Therefore, in this approach, the
particular filter defined by the spectral truncations (1) and (2) can be used to derive transport
equation that have the same form as in statistical multiscale models because the large scale and
small scale fluctuations are uncorrelated 〈ϕ>ψ<〉 = 0.

2.2 The governing equations

By applying the filter on the instantaneous momentum equation one then derives the filtered
momentum equation

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −

1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂τ(ui, uj)

∂xj
(3)

in which the subgrid-scale tensor is defined by the mathematical function

(τij)sgs = τ(ui, uj) = uiuj − ūiūj (4)

To make clear the bridge between the RANS and LES approaches, we also recall the statistical
averaged momentum equation that reads

∂ 〈ui〉

∂t
+

∂

∂xj

(
〈ui〉 〈uj〉

)
= −

1

ρ

∂ 〈p〉

∂xi
+ ν

∂2 〈ui〉

∂xj∂xj
−
∂τij
∂xj

(5)

where the Reynolds stress in the statistical sense τij includes the small scale and large scale con-
tributions

τij = 〈uiuj〉 − 〈ui〉 〈uj〉 =
〈
u′iu

′
j

〉
=
〈
u<i u

<
j

〉
+
〈
u>i u

>
j

〉
(6)

Because of the nice property of the spectral filter defined by the Fourier transform, one can remark
that the statistical average of the subgrid-scale stress is then simply the average of the small scale
fluctuating velocities 〈(τij)sgs〉 = 〈u>i u

>
i 〉. Similarly, the resolved scale tensor can be defined by

the relation
(τij)les = ūiūj − 〈ui〉 〈uj〉 (7)
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with the property 〈(τij)les〉 =
〈
u<i u

<
j

〉
. So that, the Reynolds stress tensor τij can be computed

by the sum of the statistical average of subgrid and resolved stresses

τij = 〈(τij)sgs〉+ 〈(τij)les〉 (8)

and the statistical turbulent energy is obtained as the half-trace of equation (8)

k = 〈ksgs〉+ 〈kles〉 (9)

Closure of equation (3) is then necessary for the subgrid-scale tensor. In the present approach,
this is achieved by means of a transport equation in order to get a more general closure allowing
a more realistic and precise description of the flow anisotropy than eddy viscosity models and
also to get a better account of history and non-equilibrium effects. This is particularly important
when the cutoff goes into the non-universal range of the spectrum located before the inertial
range. As usually made in LES simulations, the statistical average of the resolved stress 〈(τij)les〉

which corresponds to the correlation of the large scale fluctuating velocities
〈
u<i u

<
j

〉
appearing in

equation (6) is computed by a numerical procedure using the relation

〈(τij)les〉 =
〈
u<i u

<
j

〉
= 〈ūiūj〉 − 〈ūi〉 〈ūj〉 (10)

2.3 Exact transport equation for the subgrid-scale stress

The first step of the present approach consists in writing the exact transport equation of the
subgrid-scale stress (τij)sgs. Following the work of Germano [18], it appears that the transport
equation for the subgrid-scale tensor takes a generic form if written in terms of central moments

∂τ(ui, uj)

∂t
+

∂

∂xk

[
τ(ui, uj)ūk

]
= −τ(ui, uk)

∂ūj
∂xk

− τ(uj , uk)
∂ūi
∂xk

+ τ

(
p,
∂ui
∂xj

+
∂uj
∂xi

)

−
1

ρ

∂τ(p, ui)

∂xj
−

1

ρ

∂τ(p, uj)

∂xi
−
∂τ(ui, uj , uk)

∂xk
+ ν

∂2τ(ui, uj)

∂xk∂xk
− 2ντ

(
∂ui
∂xk

,
∂uj
∂xk

)
(11)

where in this equation, we have extended the basic definition (4) to general functions of two
variables

τ(f, g) = fg − f̄ ḡ (12)

and three variables

τ(f, g, h) = fgh− f̄ τ(g, h) − ḡτ(h, f)− h̄τ(f, g)− f̄ ḡh̄ (13)

applicable for any turbulent quantities f , g, h. Then, the resulting equation for the subgrid stress
can be rearranged in a simple form by identifying each turbulence interaction as follows:

∂τ(ui, uj)

∂t
+

∂

∂xk

[
τ(ui, uj)ūk

]
= (Pij)sgs + (Ψij)sgs + (Jij)sgs − (ǫij)sgs (14)
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In this equation, the term (Pij)sgs represents the production of turbulence due to the interaction
between the subgrid-scale stress and the filtered velocity gradient

(Pij)sgs = −τ(ui, uk)
∂ūj
∂xk

− τ(uj , uk)
∂ūi
∂xk

, (15)

the term Ψij acts to redistribute the turbulent energy among the subgrid-scale stress components,
it plays a pivotal role in second order closures by taking into account the flow anisotropy and
nonlocal effects of the turbulence

(Ψij)sgs = τ

(
p

ρ
,
∂ui
∂xj

+
∂uj
∂xi

)
, (16)

the term Jij denotes the diffusion term due to the fluctuating velocities and pressure together with
the molecular diffusion

(Jij)sgs = −
∂τ(ui, uj , uk)

∂xk
−

1

ρ

∂τ(p, ui)

∂xj
−

1

ρ

∂τ(p, uj)

∂xi
+ ν

∂2τ(ui, uj)

∂xk∂xk
, (17)

and finally, the turbulent viscous dissipation (ǫij)sgs which is generated by the interaction between
the subgrid-scale velocity gradients reads

(ǫij)sgs = 2ν τ

(
∂ui
∂xk

,
∂uj
∂xk

)
. (18)

By using the material derivative operator D/Dt = ∂/∂t+ ūk∂/∂xk, equation (14) can be rewritten
in a simple compact form as follows

D(τij)sgs
Dt

= (Pij)sgs + (Ψij)sgs + (Jij)sgs − (ǫij)sgs (19)

whereas the equation for the subgrid energy is obtained as half the trace of equation (19)

Dksgs
Dt

= Psgs + Jsgs − ǫsgs (20)

where Psgs = (Pmm)sgs/2, Jsgs = (Jmm)sgs/2, and ǫsgs = (ǫmm)sgs/2. From its definition, it is
recalled that the redistribution term Ψij vanishes through tensorial contraction because of the
continuity equation. As it was mentioned in the preceding section, the mean statistical and filtered
equations can be written in a similar form because of the nice particular property of the spectral
truncation filter. For instance, the return to isotropy term in statistical modelling Ψij is given by
the well known expression

Ψij =

〈
p

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)〉
−

〈
p

ρ

〉〈
∂ui
∂xj

+
∂uj
∂xi

〉
=

〈
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)〉
(21)

whereas the subgrid term (Ψij)sgs takes the corresponding expression as follows

(Ψij)sgs =
p

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)
−
p

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)
(22)

7



showing clearly the formal analogy between the statistical and filtered approaches and their com-
patibility. As a consequence, the closure approximations used for the statistical partially averaged
equations are assumed to prevail also in the case of large eddy numerical simulations. This formal-
ism allows to derive the PITM models like the subgrid energy model developed by Schiestel and
Dejoan [42] based on the transport equation (20) as well as the subgrid stress model proposed by
Chaouat and Schiestel [8] based on the transport equation (19).

2.4 Modelling of the transport equation for the subgrid-scale stress

As usually made in statistical models, the next step consists in modelling each term appearing in the
exact equation (11) under physical considerations. In particular, following the formalism developed
for statistical modelling, the redistribution term (Ψij)sgs given by equation (16) or equation (22) if
written in a developed form involves the subgrid-scale fluctuating pressure which is solution of the
Poisson equation. When integrating this equation in space using the Green’s function solution and
then multiplying by the subgrid-scale strain, it is found as a result that the redistribution term is
therefore decomposed into a slow part (Ψ1

ij)sgs, function of the fluctuating velocities, and a rapid

part (Ψ2
ij)sgs, involving the filtered velocity gradients. From a physical point of view, the analogy

between the RANS and LES modelling and in particular the assumption that the Rotta/rapid
terms splitting and their linear relationship approximation as a function of the Reynolds/SGS
stress tensor hold in the case of subfilter closure supposing highly unsteady perturbations is not
straightforward. There are however several arguments to comfort this hypothesis. The analogy in
the stress transport equations in RANS and LES forms is an important favourable point but this is
not a sufficient point. The main important point is that in classical turbulence phenomenology the
small scales (small eddies) are recognized to have also small characteristic time scale (they evolve
rapidly). The concepts of energy cascade and return to isotropy which are more or less active at
all scales suggest that it is reasonable to think that the mechanisms prevailing for small eddies
subjected to the deformation produced by the large eddies is comparable to the action of the mean
flow on the big eddies themselves. This leads to use analogous models of closure in both cases.
The big eddies have large time scales and so their unsteadiness is not so high in frequency than the
unsteadiness of the small eddies that have some time to “go to isotropy ”. This hypothesis is so
natural that it was already used in the pioneering work of Deardorff [14]. In the LES framework
the hypothesis would need to be demonstrated by a priori testing from experiments or fine DNS.
These same remarks also apply to the diffusion process. For LES simulations, these terms (Ψ1

ij)sgs
and (Ψ2

ij)sgs are now modelled in the range [κc, κd] where the cutoff wave number κc is usually
computed from the grid size κc = π/∆ (note that this is the usual practice but the only requirement
is that the filter width is larger or equal to the grid step) and κd is the dissipative wave number
located at the end of the inertial range of the spectrum completely after the transfer zone. The
slow term (Ψ1

ij)sgs which characterises the return to isotropy due to the action of turbulence on
itself may depend on the spectral zone. Since the small scales return more rapidly to isotropy
than the large scales which are more permanent in time before cascading into smaller scales by
non-linear interactions, the slow term (Ψ1

ij)sgs must increase with the wave number κc in order to
strengthen the return to isotropy in the range of larger wave numbers. Requiring also that usual
statistical Reynolds stress models must be recovered in the limit of vanishing cutoff wave number
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κc, the slow redistribution term is modelled as [38]

(Ψ1
ij)sgs = −csgs1

ǫsgs
ksgs

(
(τij)sgs −

1

3
(τmm)sgsδij

)
(23)

where csgs1 is a continuous function of the dimensionless parameter ηc = κcLe involving the char-
acteristic turbulence length scale Le. This function is empirically proposed in the following form

csgs1(ηc) = c1
1 + αη1 η

2
c

1 + αη2 η2c
(24)

In this relation, c1 is the usual Rotta constant used in statistical modelling, and αη1 and αη2

are numerical coefficients satisfying the condition αη1 > αη2. The function csgs1 (ηc) satisfies the
limiting condition limηc→0 csgs1(ηc) = c1. The fact that the coefficient csgs1 must increase with the
wave number is also justified by direct numerical simulations [35] made in homogeneous anisotropic
turbulent flows for various types of strain [39]. In this study, the slow term (Ψ1

ij)sgs was calculated
in the spectral space from averaging in spherical shells, and the dependence of csgs1 with respect

to the wave number was obtained. The turbulence length scale Le = k3/2/(〈ǫsgs〉 + 〈ǫ<〉) is now
built by means of the total turbulent energy obtained as the sum of the subgrid and large scale
parts k = 〈ksgs〉+ 〈kles〉, and the total dissipation rate ǫ = 〈ǫsgs〉+ 〈ǫ<〉, including the dissipation
in the subgrid zone ǫsgs and the resolved part of the dissipation rate defined by

ǫ< = ν
∂u<i
∂xj

∂u<i
∂xj

(25)

caused by the large-scale fluctuating velocities u<i = ūi−〈ui〉. This contribution to dissipation may
become not negligible in low Reynolds number flows. In contrast with the simplified formulation
assuming linear length scale, first introduced for wall bounded flows L = Kxn where K is the Von
Kármán constant [8], the new definition of the parameter ηc is now given by

ηc = κcLe =
π k3/2

(∆1∆2∆3)1/3 (〈ǫsgs〉+ 〈ǫ<〉)
(26)

where ∆i is the filter width in the ith direction. Note that equation (26) needs to compute the
total turbulent energy as well as the total dissipation rate by statistical averaging at each time
advancement step during the simulation. In practice, their statistical value is calculated from
simulation results at the previous time step. The filter width has been defined as the cubic root
of the product ∆1∆2∆3 for regular grids but more elaborated formulations can be proposed for
skewed grids [44]. However, this refinement has not been used in the present calculations. The
second term (Ψ2

ij)sgs corresponds to the linear return to isotropy produced by the filtered velocity
gradients and is therefore physically not affected by the spectral zone. In this case, the usual
statistical modelling form is retained

(Ψ2
ij)sgs = −c2

(
(Pij)sgs −

1

3
(Pmm)sgs δij

)
(27)
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although (Ψ2
ij)sgs is now a fluctuating quantity because the filtered velocity evolves rapidly in time

and space. As usual, the diffusion process (Jij)sgs is modelled assuming a gradient law hypothesis
that prevail for subgrid-scale modelling. The approximation is

(Jij)sgs =
∂

∂xk

(
ν
∂(τij)sgs
∂xk

+ cs
ksgs
ǫsgs

(τkl)sgs
∂(τij)sgs
∂xl

)
(28)

where cs is a numerical coefficient set to 0.22 whereas for the subgrid energy model, the diffusion
term is reduced to the simple relation

Jsgs =
∂

∂xj

[(
ν +

cν
σk

k2sgs
ǫsgs

)
∂ksgs
∂xj

]
(29)

with the usual values of constants cν = 0.09 and σk = 1.0. In contrast with the two-equation model
using the Boussinesq hypothesis, one can notice that the production term (Pij)sgs is allowed to
become negative. In such a case, this implies that energy is transferred from the filtered motions
up to the resolved motions, known as backscatter process.

2.5 Modelling of the transport equation for the subgrid dissipa-
tion rate

Closure of equation (19) needs the modelling of the subgrid tensorial dissipation rate (ǫij)sgs. In
the present approach, like in the statistical modelling, [26], the subgrid tensorial dissipation rate is
decomposed into an isotropic part 2/3ǫsgsδij and an anisotropic part (ǫij)sgs−2/3ǫsgsδij . Assuming
that the anisotropic part has been already incorporated in the modelling of the redistribution term
(Ψij)sgs [26], the question is then to model the energy dissipation rate ǫsgs which deserves a
particular attention in subgrid-scale models. Usually, most of subgrid models based on transport
equations of the subgrid-scale energy assume equilibrium turbulence and this hypothesis allows
to evaluate the dissipation rate by an algebraic expression referring to the mesh size. In this
line of thought, Deardorff [14] proposed a transport equation for the subgrid-scale stress whereas
other authors [15, 25] have developed models based on the transport equation for the subgrid-scale
energy, each model requiring an algebraic relation for the dissipation rate. In the present approach,
closure of equation (19) is made by modelling the subgrid dissipation rate by means of its transport
equation without using directly the grid information. Indeed, for high Reynolds numbers flows with
coarse meshes and for rapidly evolving flows, the production rate of turbulence does not exactly
balance the dissipation rate, and the filter width is no longer a good estimate of the characteristic
turbulence length scale, as shown by Da Silva and Pereira [12]. The main advantage of this approach
is to allow simulations of non-equilibrium flows when the energy spectrum departs significantly from
the Kolmogorov law. The present modelling approach of the subgrid scale dissipation rate finds its
basic foundations in spectral space by considering the transport equation of the two-point tensor

correlation φij =
〈
û′i(x,κ)û′j(x,κ)

〉
, where û′i denotes the Fourier transform of the fluctuating

velocity u′i [9]. Partial integration after spectral splitting gives rise to the dissipation equation, after
some algebra. As a result of the analytical development, taking also into account the convective

10



and diffusive processes for nonhomogeneous flows, the fluctuating modelled transport equation in
time and space for the subgrid dissipation rate ǫsgs finally reads [42, 8]

Dǫsgs
Dt

= csgsǫ1
ǫsgs
ksgs

(Pmm)sgs
2

− csgsǫ2
ǫ2sgs
ksgs

+ (Jǫ)sgs (30)

where the coefficient csgsǫ1 is found to take the theoretical value 3/2 whereas the coefficient csgsǫ2
appearing in equation (30) now involves the spectral flux F(κd) entering the zone delimited by
the wave number κd located at the end of the inertial range and also the spectrum energy density
E(κd) as follows [42, 8]

csgsǫ2 = csgsǫ1 −
〈ksgs〉

κdE(κd)

(
F(κd)

ǫ
− 1

)
(31)

The same analytical development can be used to provide the derivation of the dissipation rate
equation used in RANS modelling

Dǫ

Dt
= cǫ1

ǫ

k

Pmm

2
− cǫ2

ǫ2

k
+ Jǫ (32)

where the coefficient cǫ1 takes the value 3/2 and the coefficient cǫ2 is evaluated from the spectral
flux [42, 8]

cǫ2 = cǫ1 −
k

κdE(κd)

(
F(κd)

ǫ
− 1

)
(33)

In these expressions, F represents in fact the spectral rate of energy transferred into the wavenum-
ber range [κd,+∞] by vortex stretching from the wavenumber range [0, κd]. Equation (31) shows
that the function csgsǫ2 is a complicated expression which is not easily tractable in this form. How-
ever, when comparing equations (31) and (33) in addition with csgsǫ1 = cǫ1 , one can evaluate the
function csgsǫ2 by an equivalent simple and useful expression without loosing generality [8]

csgsǫ2 = cǫ1 +
〈ksgs〉

k
(cǫ2 − cǫ1) (34)

showing that csgsǫ2 is then a function of the ratio of the subgrid-scale energy to the total turbulent
energy. Equation (30) using the relation (34) constitutes the main feature of PITM approaches
which is basically different from an URANS (Unsteady Reynolds Averaged Navier-Stokes) ap-
proach, although it is fully compatible with it at the limit of vanishing cutoff. Intuitively, one can
easily understand that the usual ǫ equation (32) used in statistical modelling in which the whole
spectrum is modelled cannot be transposed without modification in LES in which only a part of
the spectrum is modelled. This modification is made through a variation of the coefficient csgsǫ2
and so the model is then able to “read ” the size of the grid in order to model only the appropriate
portion of the turbulence field. The theory shows however that the csgsǫ1 coefficient remains a
constant which has to be close to the theoretical value of 3/2 (see appendix A). Note that the
PANS model appears also in this line of thought with great similarities with the PITM approach
but imposes however a fixed ratio for the subgrid energy to the total energy [21]. For the subgrid
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stress model, the diffusion term (Jǫ)sgs appearing on the left hand side of equation (30) is modelled
assuming a gradient law hypothesis

(Jǫ)sgs =
∂

∂xj

(
ν
∂ǫsgs
∂xj

+ cǫ
ksgs
ǫsgs

(τjm)sgs
∂ǫsgs
∂xm

)
(35)

where the coefficient cǫ is set to 0.18 whereas for the subgrid energy model, the diffusion term takes
the simple expression

(Jǫ)sgs =
∂

∂xj

[(
ν +

cν
σǫ

k2sgs
ǫsgs

)
∂ǫsgs
∂xj

]
(36)

with the usual value σǫ = 1.3.

2.6 Improved spectral model

As shown in the preceding section, the function csgsǫ2 requires the analytical calculation of the ratio
ksgs/k that appears in equation (34). In the present PITM formulation, this ratio is now evaluated
by means of an accurate energy spectrum E(κ) inspired from a Von Kármán like spectrum valid
on the entire range of wavenumbers [10]

E(κ) =
2
3βηL

3
e k κ

2

[1 + βη(κLe)3)]
11/9

(37)

where βη is a constant coefficient. At the origin, the spectrum behaves like E(κ) = ∝ κ2 taking
into account the hypothesis of permanence of very large eddies. The use of this new spectrum
(37) valid in the entire range of wavenumbers evolving from large to small eddies allows to obtain
a more accurate result for the ratio ksgs/k than the one obtained by the previous formulation
referring to the Kolmogorov law only valid in the inertial range E(κ) = CKǫ

2/3κ−5/3 [8]. Moreover,
we will see that the use of the Von Kármán spectrum provides a new expression for csgsǫ2 which
satisfies automatically the limiting conditions when the subgrid energy approaches the total energy.
In practice, this situation occurs when performing very large eddy simulations on coarse grids
implying that the cutoff wave number may happen to be located before the inertial zone. Due to
its definition, the subgrid-scale turbulent kinetic energy is computed by integrating the spectrum
E(κ) defined by equation (37) in the wave number range [κc,+∞[. The integration then yields the
result

〈ksgs〉 (κc) =

∫ ∞

κc

E(κ) dκ =
k

[1 + βη(κc Le)3)]
2/9

(38)

When considering equation (38) for computing the ratio 〈ksgs〉 /k which appears in equation (34),
one can obtain easily the new analytical expression for csgsǫ2 , as a function of the dimensionless
cutoff wave number ηc

csgsǫ2(ηc) = cǫ1 +
cǫ2 − cǫ1

[1 + βη η3c ]
2/9

(39)

The relation (39) shows that the coefficient csgsǫ2 acts like a dynamical parameter which con-
trols the spectral distribution of turbulence through the parameter ηc depending on the turbu-
lent length-scale and on the cutoff wave number defined in equation (26). Note that in contrast
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with the simplified formulation derived from 〈ksgs〉 /k = (3CK/2) η
−2/3
c proposed in reference

[8] for wall bounded flows, the new expression (39) automatically verifies the limiting behaviour
lim ηc→0(〈ksgs〉 /k)(ηc) = 1 without any additional empirical limiter. On the other hand, when
lim ηc→∞(〈ksgs〉 /k)(ηc) = 0, the coefficient csgsǫ2 goes to cǫ1 . In this case, the subgrid-energy can
not be maintained because the computation switches to DNS (or under resolved DNS if the grid-
size is not enough refined). In equation (39), the presence of the parameter ηc defined by equation
(26) involving the total turbulent energy shows a strong coupling interaction between the subgrid
dissipation rate equation (30), the subgrid-scale stress transport equation (19) and the filtered
momentum equation (3) since csgsǫ2(ηc) governs the ratio of the subgrid energy to the total energy,
as indicated by equation (34). The computation of the function csgsǫ2 requires the knowledge of the
coefficient βη appearing in equation (39). The βη value can be obtained by satisfying the correct
asymptotic behaviour for the spectrum E(κ) defined in equation (37), limκ→∞E(κ) = CKǫ

2/3κ−5/3

in order to recover the Kolmogorov law at high wavenumbers. In particular, it can be seen that

lim
κ→∞

E(κ) =
2

3
k β−2/9

η L−2/3
e κ−5/3 =

2

3
β−2/9
η ǫ2/3κ−5/3 (40)

showing that the coefficient βη is found to take on the theoretical value βηT = (2/3CK)9/2 ≈ 0.026.
Figure 1 describes the evolution of the analytical dimensionless spectrum E(κ)/(kLe) defined by the
relation (37) compared to the Kolmogorov slope with CKǫ

2/3κ−5/3, versus the dimensionless wave
number η = κLe. One can see that the analytical spectrum slope goes to the Kolmogorov slope for
high wave numbers suggesting that the inertial zone is rapidly reached. In practice, several trial
and error tests have been made for selecting appropriate values for the two model coefficients αη

and βη . These tests have lead to the optimised coefficient values βη = (2/3CK)9/2 ≈ 0.0495 which
corresponds to the approximate Kolmogorov value CK = 1.3 and αη1 = 1.3/(20)2 , αη2 = 1/(20)2.
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Functions Expressions
Rt k2

sgs/(νǫsgs)

c1 1 + 2.58AA
1

4

2 [1− exp(−(Rt/150)
2)]

c2 0.6A
1

2

c1w −2
3
c1 +

5
3

c2w max(2
3
c2 −

1
6
, 0)/c2

fw 0.4k
3/2
sgs/ǫsgsxn

ηc (π k3/2)/[(∆1∆2∆3)
1/3 (ǫsgs + ǫ<)]

csgs
1

c1(1 + αη1 η
2
c )/(1 + αη2 η

2
c )

csgsǫ2 cǫ1 + [(cǫ2 − cǫ1)/ (1 + βη η
3
c )

2/9
]

Table 1: Functions used in the subgrid stress model.

Relatively to the theoretical value, the βη value was modified for modelling roughly 1/3 of
subgrid-scale energy for 2/3 of resolved-scale energy when performing LES simulations on coarse
grids typically encountered in engineering applications. In the other hand, the coefficients αη1 and
αη2 have been estimated in analogy with multiple scale modelling [38]. The present Reynolds stress
PITM model based on the transport equations (19) and (30) is sensitised to the cutoff location
and it can be extended to low Reynolds number flows. This is important for properly capturing
the mean velocity and turbulent stresses in the wall boundary layer, as indicated in appendix A
with the functions listed in Table (1). Furthermore, it will be demonstrated in appendix B that
the subgrid stress model is able to satisfy the realisability conditions in homogeneous flows when
the turbulence production is positive. But this is not guaranteed in all number of circumstances,
especially for instance when the cutoff wave number is located in low wave numbers in region of
high compressive strain.

2.7 Limiting behaviour for the subgrid energy model

This section is concerned with the asymptotic behaviour of the subgrid energy model defined by
equations (20) and (30) when the cutoff location approaches the upper or the lower limits of the
energy spectrum wavenumber interval. When the parameter ηc goes to zero, csgsǫ2 goes to usual cǫ2
and the model behaves like a RANS model. For LES performed on very large filter widths, i.e. with
small cutoff wavenumbers, one can remark that the filter width needs to be dissociated from the
grid itself. The reason is that the grid must always be fine enough to capture the mean flow non-
homogeneities. Then, the model tends continuously to the corresponding statistical model. On the
contrary, when ηc goes to infinity, the coefficient csgsǫ2 goes to cǫ1 . In this case, the subgrid-energy
can not be maintained because the computation switches to DNS (or an under resolved DNS if the
grid-size is not enough refined). In this case Psgs is then equal to ǫsgs : this represents the local
equilibrium situation inside a very small slice in the far end of the energy spectrum. But remark
that this limit has no practical interest, because the model becomes useless when reaching the DNS
level! When the filter width is small, i.e. when the cutoff wavenumber is large but not infinite,
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it is possible to find a limiting intermediate behaviour. In a first step, it is useful to develop the
length scale 〈ksgs〉

3/2 / 〈ǫsgs〉 using the ratio 〈ksgs〉 /k

〈ksgs〉
3/2

〈ǫsgs〉
=

k3/2

〈ǫsgs〉

(
〈ksgs〉

k

)3/2

(41)

Assuming that the cutoff is located near the upper range inside the inertial zone and taking into

account the limiting value 〈ksgs〉 /k ≈ (3CK/2) η
−2/3
c obtained in spectral equilibrium situation

when 〈ksgs〉 ≪ k, equation (42) shows that the subgrid characteristic length scale goes to the filter
width

〈ksgs〉
3/2

〈ǫsgs〉
=

∆

π

(
3CK

2

)3/2

(42)

Moreover, the subfilter viscosity is defined by νsgs = cν(〈ksgs〉
2 / 〈ǫsgs〉) and if one makes use of the

ratio 〈ksgs〉
3/2 / 〈ǫsgs〉, then it is possible to write equivalently

νsgs = c3/2ν

(
〈ksgs〉

3/2 / 〈ǫsgs〉
)2

(〈ǫsgs〉 /νsgs)
1/2 . (43)

Considering the previous result for the length-scale and assuming equilibrium between the pro-
duction and the dissipation rate at high Reynolds number, implying 〈ǫsgs〉 = 2νsgs

〈
S̄ij S̄ij

〉
with

S̄ij = (∂ūi/∂xj + ∂ūj/∂xi)/2, one can find that the limiting behaviour for the subgrid viscosity
νsgs. The first parenthesis in equation (43) goes to the filter width and the second parenthesis goes
to the squared deformation. This is indeed the Smagorinsky model with

νsgs =
1

π2

(
3CK

2

)3

c3/2ν ∆2
[
2
〈
S̄ij S̄ij

〉]1/2
(44)

This expression is valid at the limiting condition when both the grid-size is very small and the
spectral equilibrium is reached, otherwise a function of dynamical effects would be embodied in
equation (43) which takes into account non standard spectral distributions with some departure
from the Kolmogorov spectrum, and non-equilibrium like in the case of the dynamic model [19].

3 Numerical method

The numerical code [3] is based on a finite volume technique which is well appropriate for solving
the full transport equations. The governing equations under conservative form are integrated
explicitly in time using a fourth-order Runge-Kutta scheme which is well suited for simulating
unsteady flows. An implicit scheme in time is however applied for solving the turbulent source
terms that evolve rapidly in time and space because of the increasing mathematical complexity
arising from nonlinearity and interaction from the coupling of equations [10]. Two different schemes
in space have been applied for the aerodynamic and the turbulent variables, respectively. For the
aerodynamic variables, a numerical scheme based on a centred formulation with second-order or
fourth-order accuracy in space has been retained with a flux limiter used for suppressing the
spurious numerical oscillations. Whereas for the turbulent variables, (τij)sgs and ǫsgs, an upwind
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scheme with second order accuracy in space has been considered. This numerical procedure has
been developed in order to ensure positive values of the normal stresses at each time advancement
of the simulation in addition to the realisability conditions of the model, so that no artificial
limiter was required. In practice, several numerical attempts showed that the second and fourth-
order schemes in space discretisation provided quasi-similar solutions. But the order of the scheme
discretisation in time was found to have a major impact on the solutions, especially when simulating
the decay of homogeneous isotropic turbulence. Finally, these combined space-time methods have
been retained because of their properties that minimise the dissipative and dispersive numerical
errors. One obtained a high resolution scheme allowing accurate simulations of the resolved scales,
as it will be shown in the next sections when illustrating the results of the decay of homogeneous
isotropic turbulence and the channel flow simulations. More details of the numerical method are
provided in reference [3].

4 Simulation of homogeneous turbulence using the subgrid-

energy model

4.1 Decay of an isotropic non-perturbed spectrum

The present PITM model is first tested in its two-equation contracted form defined by equations
(20) and (30) in the case of decay of homogeneous isotropic turbulence referring to the experiment of
Comte-Bellot [11] in order to check the behaviour of the model (not concerned with the anisotropy
aspects). Three-dimensional turbulent energy spectra have been measured in [11] at different
distances from the grid (reported in terms of time advancement in the numerical calculation)
and the initial Reynolds number Rt = k2/(νǫ) is about 800. The PITM simulation is performed
on a medium grid N = 803 for a box-size L = 1.256 m. The wave-numbers are defined by
κ = 2π [m,n, p]t/L where m,n, p are integers that vary in the range [−N/2 + 1, N/2] leading to
a minimum wave-number κmin = 2π/(N∆) = 0.05 cm−1 and a maximum wave-number κmax =
π/∆ = 2 cm−1. In the present case, a short cutoff wave-number κc = 2 cm−1 is retained in
comparison with the maximum wave number of the Comte-Bellot experiment (κmax = 20 cm−1).
In this situation, the initial ratio of the subgrid-scale energy to the total energy ksgs/k is about
0.36 and implies that an appreciable part of the subgrid energy is modelled. The initial velocity
field has been produced by a random generator enforcing the given energy spectrum as shown
in appendix B. The computations are performed using the fourth-order Runge-Kutta scheme in
time and the fourth order centred scheme in space. Note that previous numerical attempts have
revealed that it is essential to apply high order schemes in time for obtaining a correct decay
law for the spectrum density. In particular, it has been found that the second order Runge-Kutta
scheme produced too high dissipation of the energy spectrum, especially in the domain of large wave
numbers. Figure 2 shows the evolution of the computed three-dimensional spectra starting from the
initial time (tU0/M =42) for the two values of advancement in time (tU0/M =98, 171) compared
to the Comte-Bellot data. One can observe that the first numerical spectrum computed at the
time tU0/M =98 is in good agreement with the experimental data but the other one computed
at the time advancement tU0/M =171 slightly deviates from the data. In fact, a more thorough
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Figure 2: Homogeneous decay of the energy spectra (κc = 2 cm−1). · · · ◦ · · · : Comte-Bellot experiment
(t U0/M =42, 98 and 171); - - : Kolmogorov spectrum with −5/3 slope; —: LES simulation.
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investigation reveals that the numerical slope computed at tU0/M =171 exactly corresponds to the
κ−5/3 Kolmogorov slope, as shown in this figure. This slight disagreement between the LES and the
experiment can be physically explained by the fact that the experiment is worked out at a relatively
low Reynolds number (Rt = 792), implying that the inertial transfer zone for the energy cascade
is very short in comparison with standard inertial zones computed at higher Reynolds numbers.
Figure 3 shows the time decay of the turbulence, respectively for the subgrid-scale energy 〈ksgs〉,
the resolved-scale energy 〈kles〉 and the total energy in logarithmic coordinates. The decay law
given by the standard k− ǫ model, according to the relation k/k0 = t1/(1−cǫ2 ) (where k is obtained
in the present LES by the sum of the subgrid and resolved-scales), leads to the slope of decay close
to n = −1.1 that corresponds to the usual value cǫ2 = 1.90 used in the statistical dissipation rate
equation (32).

4.2 Decay of an isotropic perturbed spectrum

In this case, the initial Comte-bellot spectrum (α) at the advancement time tU0/M = 42 is ar-
tificially perturbed by modifying the energy levels in some particular zone of the spectrum thus
departing from usual equilibrium distribution, as shown in figure 4. The aim is to study the in-
fluence of initial spectral distribution on the decay law as an illustration of out of equilibrium
situations. Relatively to the non-perturbed spectrum (α), the initial spectra are therefore modi-
fied, respectively, by increasing the large scales (β) or by decreasing the large scales (γ) levels. The
PITM results as well as the initial perturbed spectrum are plotted in figure 4. A first observation
reveals that the different curves associated to the two perturbed spectra (β) and (γ) are both
identical at the very beginning of decay but afterwards they are soon departing from the usual
decay curve corresponding to the non-perturbed spectrum (α). As a result of interest, one can
observe that a peak in large scale energy (resp. a defect in large scale energy) implies a decrease
(resp. an increase) of the decay rate of turbulence. These results are found to be in qualitative
agreement with EDQNM (eddy damped quasi-normal Markovian) spectral models predictions [2].
These evolutions can be easily explained if one consider firstly that the curves can only depart from
each other after the cascade time delay required for the perturbed area to reach the dissipation
zone of the three-dimensional spectrum. Then, the curves deviate from each other because the
small scale energy decreases more rapidly than the large scale energy and indeed the smaller the
eddies the shorter is their time scale. Obviously, this turbulence spectral effect due to departure
from equilibrium cannot be reproduced using standard single scale statistical turbulence models
because the whole spectrum is modelled without any splitting allowing to distinguish large and
small scales.

18



0 0.2 0.4

t (s)

0.2

0.4

0.6

0.8

1

k
/k

0

0.1 1.0

K (cm
−1

)

10

100

1000

E
 (

c
m

3
/s

2
)

Figure 4: Homogeneous decay of the turbulent energy in situation of perturbed spectrum
k/k0 = (〈ksgs〉+ 〈kles〉)/k0; κc = 2 cm−1; (α) : —; (β) ...; (γ) - - -.

5 Simulation of non-homogeneous turbulence using the

subgrid stress model

5.1 Fully turbulent channel flow

The test case of the fully developed turbulent channel flow is proposed for analysing the potentials
of the subgrid-stress model and, especially its capacity to reproduce the flow anisotropy and wall
flows. Two different grids are generated with a coarse and a medium spatial resolutions 16×32×64
and 32× 64× 84, respectively in the streamwise, spanwise and normal directions for checking the
grid independence of the solutions. A special attention is devoted to the sharing out of the energy
between the subgrid-scales and resolved scales of motion when the filter width changes. The sizes of
the channel along the axes x1, x2, x3, the number of grid points Ni, the length of the computational
box Li relative to the channel width δ, and the uniform spacings ∆i (i=1,2) are indicated in Table
2. In the normal direction to the wall, the grid points are distributed using non-uniform spacing
with refinement near the wall according to the transformation

x3j =
1

2
tanh [ξj atanh a] (45)

where
ξj = −1 + 2(j − 1)/(N3 − 1) (j = 1, 2, · · ·N3) (46)

a = 0.98346 and N3 = 64 or 84. The grids are uniform in the two remaining directions. The
first grid point in the direction normal to the wall is located at the dimensionless distance ∆+

3 =
∆3 uτ/ν = 0.5 for the coarse mesh and ∆+

3 = 0.3 for the refined mesh whereas the uniform
dimensionless spacings in the other directions are ∆+

1 = 105.3, ∆+
2 = 50.9 for case 1 and ∆+

1 = 50.9,
∆+

2 = 25.1 for case 2. The subgrid model is applied here in a low Reynolds number version in the
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Case N1 N2 N3 L1/δ Li=2,3/δ ∆1/δ ∆2/δ ∆3c/δ ∆+
1 ∆+

2

DNS [34] 256 192 193 π π/2 0.012 0.008 0.008 10.0 6.5
present LES 1 16 32 64 2 2 0.133 0.065 0.038 105.3 50.9
present LES 2 32 64 84 2 2 0.065 0.032 0.029 50.9 25.1

Table 2: Simulation parameters for the fully developed turbulent channel flow.
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Figure 5: Subgrid-scale coefficient csgsǫ2 = cǫ1 + [(cǫ2 − cǫ1)/ (1 + βη η
3
c )

2/9
] •, LES 1 (16 × 32 × 64).

Rτ = 395.

aim to calculate the near wall flow region. In particular, like in the Launder and Shima model [26],
the influence of anisotropy invariants is introduced (see appendix A).
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Figure 7: Mean velocity profile. 〈u1〉 /uτ in logarithmic coordinate; (a), LES 1 (16× 32× 64).
(b), LES 2 (32× 64× 84). LES : N; Smagorinsky: ◦; DNS :—; Rτ = 395.
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Figure 8: Turbulent subgrid scale stresses 〈(τii)sgs〉
1/2 /uτ . (a), LES 1 (16× 32× 64).

(b), LES 2 (32× 64× 84). N: i=1; ◭:, i=2; ◮:, i=3.
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Figure 9: Turbulent resolved scale stresses 〈(τii)les〉
1/2 /uτ . (a), LES 1 (16× 32× 64).

(b), LES 2 (32× 64× 84). N: i=1; ◭: i=2; ◮: i=3.
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Figure 10: Turbulent Reynolds stresses (〈(τii)sgs〉+ 〈(τii)les〉)
1

2 /uτ . (a), LES 1 (16× 32× 64).
(b), LES 2 (32× 64× 84). LES : N: i=1; ◭: i=2; ◮: i=3; Smagorinsky : △: i=1; ⊳: i=2; ⊲:
i=3; DNS :—; Rτ = 395.
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Figure 12: Solution trajectories projected onto the plane formed by the second subgrid-scale invariant
A2 = aijaji and the third subgrid-scale invariant A3 = aijajkaki. ◦: LES 1 (16× 32× 64). Rτ = 395.
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Figure 14: Isosurfaces of instantaneous vorticity vector in the streamwise direction ω1ν/u
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The LES results are compared with the data of the direct numerical simulation performed by
Moin et al. [34] at a Reynolds number Rτ = 395, based on the friction velocity uτ and the channel
half width δ/2, mainly for the velocity and the total turbulent stresses obtained from the sum of the
subgrid and large scales energies. The boundary conditions applied to the computational domain
are periodic boundary conditions in the streamwise and spanwise directions and a no slip velocity
condition at the walls. A constant pressure gradient term has been implemented in the momentum
equation (3) for balancing the friction at the walls. For comparison purposes, numerical LES
simulations using the Smagorinsky model in a version proposed by Lilly [29] are also performed.
This variant model takes into account the mean strain rate instead of the instantaneous filtered
strain as follows

νt = (CsD∆)2
〈
2S̄ij S̄ij

〉1/2
(47)

where D is Van Driest Damping function defined by D = 1−exp(x+3 /25) and Cs is the Smagorinsky
constant taken to the consensual value 0.1.

Figure 5 shows the evolutions of the function csgsǫ2 versus the wall distance x3 for the mesh
with coarse spatial resolution. According to equation (39), it is found that csgsǫ2 varies in the
range [cǫ1 , cǫ2 ]. In particular, this function csgsǫ2 goes to the upper limit cǫ2 near the walls and
approaches the lower limit cǫ1 when moving to the centreline of the channel. Physically, this re-
sult means that the subgrid-scale model varies continuously from quasi-URANS to a LES model
and behaves more or less like the RSM model near the wall, although the mesh is very refined
(∆+

3 = 0.5). The main reason that explains such behaviour is due to the dynamical parameter
ηc = κcLe that can be viewed as the ratio of the turbulent length-scale to the grid-size πLe/∆
and which goes to zero near the wall region implying a RANS model behaviour. This is not a
property of the model but the consequence of a particular choice in grid refinement. Moreover,
one has to keep in mind that the energy spectrum shape is not universal and is locally evolving
in time and space. Considering that the spectrum near the wall region is out of spectral equi-
librium, the subgrid-scale energy may be very large in the wall region, even for a large cutoff
wave number. Figure 6 shows the profiles of the grid size ∆ = π/κc as well as the computed

turbulent length scale Lsgs = π(3CK/2)
−3/2 〈ksgs〉

3/2 / 〈ǫsgs〉 given by equation (42) versus the wall
distance in the channel for the simulation performed on the coarse mesh. One can see that these
two scales differ from each other, confirming the necessity to evaluate the length-scale by means
of its subgrid dissipation-rate equation (30) instead of simply assuming an equilibrium hypothe-
sis. Figure 7 shows the profiles of the statistical mean velocity 〈u1〉 /uτ in logarithmic coordinate
x+3 = x3uτ/ν for the simulations performed on the coarse and refined meshes, respectively. As
a result, it is found that both velocities computed by the subgrid-stress model agree very well
with the DNS data. This result was expected since the velocity profile is mainly governed by the
model that behaves like the RSM model in the wall region, provided the low Reynolds number
formulation is sufficiently accurate. On the contrary, the Smagorinsky velocities present some
deviations with the DNS data in the logarithmic region. Figure 8 displays the evolutions of the
streamwise, spanwise and normal normalised subgrid stresses, 〈(τii)sgs〉

1/2 /uτ for the coarse and
refined meshes. One can see that the subgrid scale stresses are indeed anisotropic in the vicinity
of the walls. As already mentioned, only a second order closure modelling is able to reproduce
the flow anisotropy because of the pressure-strain term (Ψij)sgs which redistributes the energy
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among the subgrid-stresses. This remark justifies the present strategy that has discarded viscosity
models. Figure 9 shows the evolutions of the resolved stresses 〈(τii)les〉

1/2 /uτ for both simulations.
The resolved stresses present regular shapes characterised by the peaks of turbulence intensity
close to the walls. It appears that the statistical convergence has been fully reached as shown by
the good degree of symmetry of the curves. The present model, however, requires more temporal
iterations than needed in the previous formulation valid for wall bounded flows [8] to reach the
flow convergence because of the strong coupling interaction between the subgrid dissipation rate
and stress equations. When comparing the stresses between the two LES simulations performed
on the coarse and refined meshes, the evidence is clear that the sharing out of the turbulence
energies is governed by the grid size. In particular, the subgrid stresses performed on the coarse
mesh present higher intensity than those observed for the refined mesh whereas the reverse situa-
tion occurs for the resolved stresses. Moreover, one can see that the resolved scales are of higher
energy than the subgrid scales in the centre of the channel. This results means that the core flow
is strongly characterised by the large scales. Figure 10 describes the evolutions of the normalised
total Reynolds stresses computed by the subgrid stress model as the sum of the subgrid and large
scale parts (〈(τii)sgs〉 + 〈(τii)les〉)

1/2/uτ (i=1,2,3) for the two LES simulations performed on the
coarse and refined meshes. One can observe a good agreement with the DNS data for both coarse
and refined grids. In particular, the turbulent peak close to the walls is well reproduced. It appears
however that the stresses are slightly overpredicted by the coarse simulation whereas an excellent
agreement is observed for the refined simulation. This difference should probably attributed to the
numerical scheme diffusion which increases with the width of the grid size. On can see also that
the normal stresses computed on the coarse grid using the Smagorinsky model highly overpredict
the DNS data although the stresses associated to the refined grid show better agreement with the
data. This confirms that the Smagorinsky model requires very refined grids for providing accurate
results because of its simple formulation based on equilibrium assumptions.

Figure 11 is concerned with the budget of the subgrid turbulent energy equation (20). This
figure shows the evolutions of the subgrid production, diffusion and dissipation terms Psgs, Jsgs, ǫsgs
in logarithmic coordinate for the LES simulation performed on the coarse mesh (16 × 32 × 64).
One can see that these terms become important close to the wall and decrease rapidly away
the wall. Close to the wall, the subgrid diffusion is of the same level as the subgrid dissipation,
showing that the diffusion process plays an important role in the boundary layer, and when moving
away from the wall, the diffusion decreases rapidly. For the dimensionless distance x+3 > 30, the
subgrid turbulence production balances the subgrid dissipation rate. At the wall, the molecular
diffusion exactly balances the dissipation rate. These information suggest that the meshes used in
LES simulations must be sufficiently refined near the walls for correctly reproducing the physical
processes acting in the boundary layer, even for industrial flows performed on coarse meshes. In
the preceding section, it has been recalled that the subgrid-scale model is able to satisfy the weak
form of the realisability conditions. We propose to illustrate this result by considering the diagram
of Lumley [30] for a particular case when the solution trajectories are computed along a straight
line normal to the wall in a cross section of the channel. The plane formed by the second and third
subgrid-scale invariants A2, A3 has been considered to check the realisability constraint. In this
framework, Lumley [30] has demonstrated that the possible turbulence states must remain inside a
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curvilinear triangle delimited by the straight line of the two-dimensional state satisfying equation

A3 −A2 +8/9 = 0 and by two curves of axisymmetric states satisfying equations |A2| = 61/3A
2/3
3 .

Figure (12) shows the computed trajectories in the triangle of Lumley. A first observation reveals
that the solution trajectories remain inside the curvilinear triangle of realisability, confirming that
the realisability conditions (52), (53) and (54) are satisfied. When moving from the wall toward the
centreline of the channel, the trajectories depart from the upper region of the triangle and slowly
approach the origin of the triangle, showing that the anisotropy of the turbulence decreases with
respect to the wall distance of the channel. The channel flow investigation is followed by figure 13
which describes the evolutions of two-point correlation tensors

Rii(x1, x2, x3) =
〈u<i (x1, x2, x3)u

<
i (x1 + r1, x2, x3)〉〈

u<i
2
(x1, x2, x3)

〉 (48)

for i = 1, 2, 3 (no summation), R11, R22 and R33, versus the streamwise distance x1 where r1 ranges
from 0 to δ for the simulation performed on the coarse mesh. The two-point correlations of the
resolved scales are computed using the relation (10). The correlations are plotted for (x1, x2, x3)
located on the centreline of the channel x3 = δ where the resolved scale energy is much larger
than the subgrid scale energy. Firstly, it can be observed that the box size is adequate since the
longitudinal two-point correlation tensor almost returns to zero. Secondly, it is found that the
velocity correlation R11 in the streamwise direction is larger than the corresponding transverse
correlations R22 or R33. As usually known, the slow decay of R11 with respect to the distance r1
indicates the presence of highly elongated eddies in the streamwise direction [33]. It is remarkable
that the present calculation, in spite of its coarse grid resolution in the centre of the channel,
succeeded to provide a good qualitative evolution of the two-point correlation tensor. Note that
other turbulent variables involving two-point velocity correlations such as for instance the tensorial
length-scale in each direction can also be computed from the present simulation. Figure 14 shows
the isosurfaces of the instantaneous vorticity vector in the streamwise direction indicating the
dynamical elements of the flow in wall turbulence. Although the grid is relatively coarse, the
simulation reproduces qualitatively these structures according to DNS data [33]. In particular, the
elongated eddies are well observed in the streamwise direction.

6 Concluding remarks

The PITM approach viewed as a continuous hybrid RANS/LES model has been reconsidered using
a general formulation based on an accurate analytical energy spectrum E(κ) inspired from Von
Kármán spectra that can be used on the entire range of wavenumbers. Also, a characteristic tur-
bulence length scale Le = k3/2/(〈ǫsgs〉+ 〈ǫ<〉) computed at each time advancement is introduced in
order to apply to low Reynolds number turbulence in which the viscous dissipation in the resolved
scales is not negligible. The main hypotheses underlying the development of the method have been
specified. Beyond the formal analogy in the equations, from a physical point of view, it is assumed
in the LES framework that the interaction mechanisms of the subgrid-scales with the resolved
scales of the turbulence are of the same nature than the interaction mechanisms involving all the
fluctuating scales with the mean flow, allowing transposition of closure hypotheses from RANS to
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LES. This model has been calibrated and successfully tested on the decay of homogeneous isotropic
turbulence referring to the well known Comte-Bellot experiment. Then it has been applied to the
case of an homogeneous non-equilibrium flow generated artificially by perturbing the initial energy
spectrum. A correct qualitative behaviour has been obtained in agreement with EDQNM predic-
tions. The performance of the model and especially, its capabilities in the prediction of strong
nonhomogeneities and anisotropies have been demonstrated in the fully turbulent channel test
flow case. It has been shown that the PITM method allows to perform numerical simulations of
turbulent flows on coarse meshes, whatever the location of the cutoff wave number. The method
is fully compatible with the usual RANS models which appear as the limit of the model when
the cutoff vanishes. The present hybrid RANS/LES model looks as a good candidate for study-
ing engineering turbulent flows that presents complex physics, going beyond the usual URANS
approaches provided however that the numerical solver for the transport equations is sufficiently
stable and accurate for reproducing the unsteady large scales of the flow. As examples of engineer-
ing illustration, the subgrid-scale energy was successfully applied for simulating both a channel flow
subjected to periodic forcing [42] and a spatial development of a shearless mixing layer involving
non-equilibrium spectral distributions [1]. The subgrid scale stress model in a previous version was
used for simulating a channel flow with mass injection subjected to the development of natural
unsteadiness leading to a transition regime, and a good description of the flow was obtained [8].
The present subgrid-scale stress model will be considered soon for predicting a separated flow in
a channel with streamwise periodic constrictions for purpose of comparison with refined LES [16].
In the near future, more various extensive applications will be necessary to assess more thoroughly
the PITM potentials for practical applications. In particular calculations with well documented
recirculating flows like the constricted channel flow would be interesting. Another direction of
research would be natural or forced unsteady behaviours.

A Appendix: Low Reynolds number formulation of

the subgrid-scale stress model

The present subgrid stress PITMmodel based on the transport equations (19) and (30) is developed
in a low Reynolds number formulation. Like in the Launder and Shima model [26], the function c1 in
equation (24) depends on the second and third subgrid-scale invariants A2 = aijaji, A3 = aijajkaki
and the flatness parameter A = 1− 9

8(A2 −A3) where aij = [(τij)sgs−
2
3ksgsδij]/ksgs. For isotropic

flows, the parameter A goes to unity since the invariants A2 and A3 are zero whereas near walls,
A is close to zero because of the two component limit turbulence states. Moreover, a new term
(Ψij)

w
sgs, inspired from the modelling of Gibson and Launder [20], is added in the original term Ψij

in order to account for the wall effects caused by the reflection of the pressure fluctuations from
rigid walls

(Ψw
ij)sgs = c1w

ǫsgs
ksgs

((τkl)sgsnknlδij − 3

2
(τki)sgsnknj − 3

2
(τkj)sgsnkni) fw

+ c2w

(
(Ψ2

kl)sgsnknlδij −
3

2
(Ψ2

ik)sgsnknj −
3

2
Ψ2

jknkni

)
fw (49)
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where in this expression, ni is the unit vector perpendicular to the wall and fw is a near wall
damping function. Taking into account these developments, the modelled transport equation in a
low Reynolds number version reads

D(τij)sgs
Dt

= (Pij)sgs + (Ψ1
ij)sgs + (Ψ2

ij)sgs + (Ψw
ij)sgs + (Jij)sgs −

2

3
ǫsgsδij (50)

The dissipation rate ǫsgs equation (30) is also developed in a low Reynolds number formulation for
approaching walls

Dǫsgs
Dt

= csgsǫ1
ǫsgs
ksgs

Psgs − csgsǫ2
ǫsgsǫ̃sgs
ksgs

+
∂

∂xj

(
ν
∂ǫsgs
∂xj

+ cǫ
ksgs
ǫsgs

(τjm)sgs
∂ǫsgs
∂xm

)
(51)

where ǫ̃sgs = ǫsgs − 2ν(∂
√
ksgs/∂xn)

2, xn is the normal coordinate to the wall. The numerical
constants of the model are the following csgsǫ1 = cǫ1 = 1.45, cǫ2 = 1.9, cǫ3 = 0.14, cǫ = 0.18. The
functions used in equations (50) and (51) including csgsǫ2 are listed in Table (1).

B Appendix: Realisability conditions

The question is to know if the subgrid stress model is able to satisfy the realisability conditions
which imply non-negative values of the three principal invariants Ii appearing in the characteristic
polynomial P (λ) = λ3 − I1λ

2 + I2λ− I3 deduced from the eigenvalue equation |(τij)sgs−λδij | = 0
as mentioned by Schumann [43]. This question is crucial since a model which is not realisable
cannot be retained for performing LES simulations. The expressions of the invariants Ii are the
following

I1 = (τii)sgs > 0 (52)

I2 =
1

2
[(τii)sgs(τjj)sgs − (τij)sgs(τji)sgs] > 0 (53)

I3 =
1

6
[(τii)sgs(τjj)sgs(τkk)sgs − 3(τkk)sgs(τij)sgs(τji)sgs + 2(τij)sgs(τjk)sgs(τki)sgs] > 0 (54)

where the usual Einstein summation convention is applied for the indices i, j, k. In practice, it
is more convenient to analyse the weak form of the realisability conditions based on the transport
equation (19) which require that when a principal subgrid-stress component vanishes, its time
derivative must be positive to prevent negative values of the normal subgrid-stress components to
appear [47]. From a physical standpoint, it is easier to examine the question of realisability in a
coordinate system aligned with the principal axes of the subgrid stress tensor. By introducing the
tensors pij and qij that allow to express the tensorial components (τij)sgs from the local coordinate
system to the principal coordinate system, the subgrid stress (τ∗ij)sgs in the principal axes of
coordinate is then computed by the tensorial relation

(τ∗ij)sgs = qil (τlm)sgs pmj (55)

verifying the property pilqlj = δij . The analysis is conducted in the particular case of homogeneous
turbulence. Equation (19) is then considered and can be written in the compact form

∂(τij)sgs
∂t

= (Pij)sgs + (Ψij)sgs −
2

3
δijǫsgs = Sij (56)
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In this framework, the differentiation of equation (55) yields the resulting equation

∂(τ∗ij)sgs

∂t
=
∂qil
∂t

plk (τ
∗
kj)sgs + (τ∗in)sgs qnm

∂pmj

∂t
+ qilSlmpmj (57)

Taking into account the derivative of the tensorial product pilqlj = δij

∂(qil plj)

∂t
=
∂qil
∂t

plj + qil
∂plj
∂t

= 0 , (58)

it is a straightforward matter to show that equation (57) reduces to

∂(τ∗ij)sgs

∂t
= γik (τ

∗
kj)sgs − (τ∗in)sgs γnj + S∗

ij (59)

where γij = qil ∂plj/∂t denotes a skew symmetric tensor. Therefore, equation (59) indicates that
the turbulent subgrid stress (τ∗ii)sgs can be written in the principal axes in the following way

∂(τ∗ii)sgs
∂t

= (P ∗
ii)sgs − csgs1

ǫsgs
ksgs

(
(τii)sgs −

2

3
ksgs

)
− c2

(
(P ∗

ii)sgs −
2

3
Psgs

)
−

2

3
ǫsgs (60)

where the Einstein summation convention is now suspended for indices ii. When the stress com-
ponent (τ∗ii)sgs vanishes, the production term in the principal axes (P ∗

ii)sgs goes also to zero so that
the weak form of the realisability condition finally implies the relation

csgs1 > 1− c2
Psgs

ǫsgs
(61)

For usual cases of flow physics, the production term of the turbulent energy is positive and therefore,
due to the expression of the function csgs1 defined in equation (24) and table (1) for the model
in its low Reynolds number version, the constraint equation (61) can be verified. The fact that
the function csgs1 , depending on the parameter η, increases for large wave numbers enforces the
realisability of the model. However, one can mention that the constraint (61) is not verified in all
number of circumstances because the production incidentally can be negative. Note that for i 6= j,
equation (59) becomes

γik (τ
∗
kj)sgs − (τ∗in)sgs γnj + S∗

ij = 0 (62)

allowing the determination of the tensor γik.

C Appendix: Generation of isotropic turbulence in

the spectral space with an imposed spectrum energy

The first step consists in generating an homogeneous isotropic field in a cubic box of size L using
the method developed by Roy [36]. A random vector stream function in the spectral space is first
defined

ψ̂(κ) = a(κ)ψ̂1(κ) + jb(κ)ψ̂2(κ) (63)
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where ψ̂1 and ψ̂2 are two vectors uniformly distributed on the sphere of radius unity in the half
space κ3 > 0. The stream function is computed in the half lower space κ3 < 0 by the relation
ψ̂(−κ) = ψ̂∗(κ), where ψ̂∗ denotes the complex conjugate of ψ̂, that ensure that velocity is in the
real space. The fluctuating velocity is then obtained by the relation ûi = jκjǫijkψ̂k. In order to
obtain the given energy spectrum,

〈ûi(κ)ûi(−κ)〉 =

(
2π

L

)3 E(κ)

2πκ2
(64)

the coefficients a and b appearing in equation (63) are then determined from the relations

a(κ) =
cos(λ)

||ǫijkκjψ̂1k||

(
2π

L

) 3

2

(
E(κ)

2πκ2

) 1

2

(65)

b(κ) =
sin(λ)

||ǫijkκjψ̂2k||

(
2π

L

) 3

2

(
E(κ)

2πκ2

) 1

2

(66)

where λ is a random number in the interval [0, 2π]. The velocity u in the physical space is then
computed from its inverse Fourier transform

ui(x1, x2, x3) =
∑

κ1,κ2,κ3

ûi(κ1, κ2, κ3) exp (jκmxm) (67)

References

[1] I. Befeno and R. Schiestel. Non-equilibrium mixing of turbulence scales using a continuous
hybrid RANS/LES approach: Application to the shearless mixing layer. Flow, Turbulence

and Combustion, 78:129–151, 2007.

[2] C. Cambon, D. Jeandel, and J. Mathieu. Spectral modelling of homogeneous non-isotropic
turbulence. Journal of Fluid Mechanics, 104:247–262, 1981.

[3] B. Chaouat. Modélisation et simulation numériques d’écoulements de canal plan dans un
repère fixe ou en rotation avec des modèles de turbulence du premier et du second ordre du
type ASM et RSM. Technical report, ONERA, 1999. RTS 28/1145.

[4] B. Chaouat. Simulations of channel flows with effects of spanwise rotation or wall injection
using a Reynolds stress model. Journal of Fluid Engineering, ASME, 123:2–10, 2001.

[5] B. Chaouat. Numerical predictions of channel flows with fluid injection using a Reynolds
stress model. Journal of Propulsion and Power, 18(2):295–303, 2002.

[6] B. Chaouat. Reynolds stress transport modeling for high-lift airfoil flows. AIAA Journal,
44(10):2390–2403, 2006.

[7] B. Chaouat and R. Schiestel. Reynolds stress transport modelling for steady and unsteady
channel flows with wall injection. Journal of Turbulence, 3:1–15, 2002.

35



[8] B. Chaouat and R. Schiestel. A new partially integrated transport model for subgrid-scale
stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17(065106):1–19,
2005.

[9] B. Chaouat and R. Schiestel. From single-scale turbulence models to multiple-scale and
subgrid-scale models by Fourier transform. Theoretical Computational Fluid Dynamics,
21(3):201–229, 2007.

[10] B. Chaouat and R. Schiestel. Hybrid RANS/LES modeling for non-equilibrium turbulent
flows. Proceeding of the 5th Symposium on Turbulent Shear Flow Phenomena, 2:753–758,
2007.

[11] G. Comte-Bellot and S. Corrsin. Simple Eulerian time correlation of full and narrow-band
velocity signals in grid-generated, isotropic turbulence. Journal of Fluid Mechanics, 48:273–
337, 1971.

[12] C. B. da Silva and J. C. F. Pereira. On the local equilibrium of the subgrid-scales: the velocity
and scalar fields. Physics of Fluids, 108103:1–4, 2005.

[13] L. Davidson and M. Billson. Hybrid LES-RANS using synthesized turbulent fluctuations for
forcing in the interface region. International Journal of Heat and Fluid Flow, 27:1028–1042,
2006.

[14] J. W. Deardorff. The use of subgrid transport equations in a three-dimensional model of
atmospheric turbulence. Journal of Fluid Engineering, ASME, 95:429–438, 1973.

[15] A. Dejoan and R. Schiestel. LES of unsteady turbulence via a one-equation subgrid-scale
transport model. International Journal of Heat and Fluid Flow, 23:398–412, 2002.
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