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Abstract

Predictions of steady and unsteady injection driven flows in a plane channel are performed by
solving the averaged Navier-Stokes equations using a compressible Reynolds stress model. The
boundary condition for the fluid injection through the porous wall has been formulated by taking
into account experimental investigations. Depending of the Reynolds number, the flow can be
steady or unsteady. For the steady flow, laminar to turbulent regimes are reproduced in good
agreement with the experimental data for both the velocity and the turbulent stresses. For the
unsteady flow which result from natural instabilities, the resonant frequency quite close to the
second longitudinal acoustic mode as well as the coherent flow structures are fairly well predicted in
comparison to experiment. Animations for the vorticity and entropy contours show the mechanism
of the vortex shedding which develops in the channel.

1 Introduction

Turbulence plays a significant role in the flow in solid propellant rocket motors (SRM) through
its influence on the momentum and energy transfers in the motor chamber. The flow in SRM
results from the propellant burning and differs appreciably from a standard duct flow bounded by
impermeables walls. For fluid dynamics investigations, the flow in SRM can be modeled by a duct
flow with fluid injection through a porous wall. Different duct flow regimes can occur, depending
on the injection Reynolds number Rs = usδ/ν where us, δ and ν represent the injection velocity at
the permeable surface, the diameter and the kinematic viscosity [1]. The flow can evolve spatially
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from a laminar to a steady turbulent regime, with a transition process [2]. It can also be oscillating
due to the coupling between vortices generated by the hydrodynamic instability mechanism and
the chamber acoustic modes [3, 4]. In the case where the vortices are emitted at a frequency close
to the one of a longitudinal acoustic mode, the flow is characterized by an acoustic resonant regime.
These different flow regimes affect the ballistics predictions of motors. For instance, large solid
propellant boosters for space launchers may exhibit low pressure and thrust oscillations. For engi-
neering applications, the knowledge of the flow structure and the acting mechanisms are of major
importance for predicting the motor operating conditions. Direct numerical simulation (DNS) of
the whole flow domain in a chamber of a solid rocket motor can not be performed because of the
size of the chamber. Recently, only a small flow domain in a motor chamber has been simulated
by this approach [5]. However, because of the mass injection through the wall, the inlet and outlet
boundary conditions of the computational domain are not periodic. So that specific adaptations
of the numerical method must be implemented in the code to overcome these difficulties. Large
Eddy Simulation (LES) is a promising route for studying motor internal flows. It allows a good
description of the turbulence interaction mechanisms. For instance, Silvestrini [6] simulated the
flows in a simplified geometry of a porous walled channel with an inclined backward-facing trailing
edge using LES model based on a filtered or selective structure function [7]. For that geometry,
it has been found that the shear layers of the flow were mainly caused by the injecting surface
singular point, as already observed in previous computations [8]. Recently, Apte and Yang [9] per-
formed computation of a plane channel flow with fluid injection through the wall using a dynamic
Smagorinsky model. Their simulation succeeded in reproducing the vortex-stretching and rolling
mechanisms of the flow. Although that LES has demonstrated his capability to handle such com-
plex flows, it still requires very large computational time despite the recent progess in computers.
Therefore, in a more practical way for engineering applications, flows in SRM have been modeled
using Reynolds average Navier-Stokes equations (RANS). In the past, several authors made such
flow predictions using first order turbulence model such as k − ε or k − ω. However, this model
has not given satisfactory flow predictions in SRM. In particular, for steady flows which evolve
spatially from laminar to turbulent regime, the transition process and the turbulence levels in the
post transition zone could not be reproduced [10, 11, 12]. The flow turbulence levels were overpre-
dicted by about 200% and 300% in the post-transition of the flow. These results show that more
advanced turbulent models must be used for SRM applications. Contrary to first order turbulence
model, second order turbulence model based on the transport equation of each individual Reynolds
stress provides a better description of the flow physics. This is mainly due to the pressure-strain
correlation term in the Reynolds stress model (RSM) which plays a pivotal role in determing the
structure of turbulent flows. This term of major importance redistributes turbulent energy among
the Reynolds stress components. It is composed by a slow and rapid parts which take into account
the flow anisotropy. In the past, this term has been modeled by assuming homogeneous flows that
are near equilibrium. Then, recent improvements have been made using different approaches. For
instance, Speziale has obtained a general form of the redistribution term using tensorial invari-
ance properties [13]. Schiestel has taken into account multiple turbulence scales in the model [14].
For SRM applications, Beddini used an RSM turbulent model in a previous formulation based on
transport equations of Reynolds stresses with an algebric relation for the turbulence macro-length
scale [15]. A reasonable agreement with experimental data was obtained for a duct flow with wall
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injection [16].

The present study is concerned with advanced second order turbulence transport modeling
of steady and unsteady flows with natural instabilities in planar channel. The aim is to predict
accurately the flowfield in a cold flow set up called VECLA which has been developed at ONERA.
In this work, the model of Launder and Shima [17] has been selected because it embodies some
advanced concepts and contains only a few empirical terms. Thus it is a good candidate to handle
a large variety of flows. The original model has been extended for compressible flows and modified
for channel flows with effect of spanwise rotation or wall injection through a porous wall [18, 19].
It has predicted turbulence in rotating channel flows in good agreement with LES data [20]. In
the present study, we show that this level of closure is able to reproduce both steady and unsteady
injection induceed flows with a good description of the acting mechanisms.

2 Experimental setup

The experimental setup VECLA [21] is a plane channel bounded on one side by a porous plate
made of sintered bronze and on the other side by an impermeable wall as indicated in figure (1).
The size of the porosity of the porous material is 8 µm. Cold air at 303 K is injected with a
uniform mass flow rate m. The length of the channel is 581 mm. By adjusting the height of the
channel δ and the injection velocity us, different flow regimes can be realized. In particular, for
δ = 10 mm, m = 2.619 kg/m2s, us ≈ 1.36 m/s, Rs ≈ 1600, the steady flow undergoes a transition
process from the laminar to turbulent regime. For δ = 20 mm, m = 2.04 kg/m2s, us ≈ 1.70 m/s,
Rs ≈ 2200, the flow becomes unsteady and presents an acoustic resonant regime. It is of interest
to note that linear stability theory shows that the axial-flow Reynolds number at neutral stability
increases linearly for large values of the injection Reynolds number [1]. Velocity measurement have
been performed with a hot wire probe located at different cross sections of the channel.

3 Governing equations

Turbulent flow of a viscous fluid is considered. As in the usual treatment of turbulence, the
flow variable φ = ρξ, where ρ is the mass density, is decomposed into an ensemble average and
fluctuating parts as φ = φ + φ′. In the present case, the Favre average is used for compressible
fluid so that the variable ξ can be written as ξ = ξ̃ + ξ′′ with the particular properties ξ̃′′ = 0
and ρξ′′ = 0. These relations imply that ξ̃ = ρξ/ρ̄. The ensemble average of the Navier-Stokes
equations produces in Favre variables the following forms of the mass, momentum and energy
equations written in a general rotating frame of reference Ω :

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ũj) = 0 (1)

∂

∂t
(ρ̄ ũi) +

∂

∂xj
(ρ̄ ũi ũj) =

∂Σ̄ij

∂xj
− 2εijkρ̄Ωj ūk (2)
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Figure 1: Sketch of VECLA facility

∂

∂t
(ρ̄ Ẽ) +

∂

∂xj
(ρ̄ Ẽ ũj) =

∂

∂xj

(
Σ̄ij ũi

)
+

∂

∂xj

(
σiju′′i − 1

2
ρ̄ ũ′′ku

′′
ku
′′
j

)
− ∂q̄j
∂xj

(3)

where ui, E, Σij , σij , qi are the velocity vector, the total energy, the total stress tensor, the viscous
stress tensor and the total heat flux vector, respectively. The mean stress tensor Σ̄ij is composed
by the mean modified pressure p̄∗, the mean viscous stress σ̄ij and the turbulent stress ρ̄ τij as
follows :

Σ̄ij = −p̄∗ δij + σ̄ij − ρ̄ τij (4)

where p̄∗ = p̄ − 1
2 ρ̄|Ω × x|2. In the present application, Ω = 0. In this expression, the tensor σ̄ij

takes the usual form :

σ̄ij = 2µ̄S̄ij −
2

3
µ̄
∂ūk
∂xk

δij (5)

where the mean strain rate S̄ij and and the Favre-averaged Reynolds stress tensor τij are defined
respectively by :

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(6)

τij = ũ′′i u
′′
j (7)

and µ is the molecular viscosity. Assuming ideal gas law, the mean thermodynamic pressure is
computed by:

p̄ = (γ − 1)ρ̄
(
Ẽ − 1

2
ũiũi − 1

2τii

)
(8)
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where γ is the ratio of specific heats. The presence of the turbulent contribution τii in equation (8)
shows a coupling between the mean equations and the turbulent transport equations. The mean
heat flux q̄i is composed of the laminar and turbulent flux contributions:

q̄i = −κ̄ ∂T̄
∂xi

+ ρ̄ h̃′′u′′i (9)

where T , h and κ are, respectively, the temperature, the specific enthalpy and the thermal conduc-

tivity. Closure of the mean flow equations is necessary for the turbulent stress ρ̄ ũ′′i u
′′
j of the total

stress tensor Σij which appears in the momentum equation (2) and energy equation (3), as well as

for the turbulent transport σiju′′i − 1
2
ρ̄ ũ′′ku

′′
ku
′′
j and the turbulent heat flux ρ̄ h̃′′u′′i which are present

in the energy equation (3). The Favre-averaged correlation tensor τij = ũ′′i u
′′
j is computed by the

Reynolds stress model of Launder and Shima [17] which has been extended for compressible flows,
developed for rotation and modified for wall injection [18, 19]. In a general case of rotating frame,
the transport equation of the Reynolds stress tensor is:

∂

∂t
(ρ̄ τij) +

∂

∂xk
(ρ̄ τij ũk) = Jij + Pij + PRij −

2

3
ρ̄εδij

+ Φ1
ij + Φ2

ij + Φw
ij (10)

where :

Jij =
∂

∂xk

(
µ̄
∂τij
∂xk

+ csρ̄
k

ε
τkl
∂τij
∂xl

)
(11)

Pij = −ρ̄τik
∂ũj
∂xk
− ρ̄τjk

∂ũi
∂xk

(12)

PRij = −2ρ̄Ωp (εjpkτki + εipkτkj) (13)

Φ1
ij = −c1ρ̄εaij (14)

Φ2
ij = −c2

(
Pij − 1

3
Pkkδij + 1

2
PRij

)
(15)

Φw
ij = cw1

ρ̄ε

k
(τklnknlδij − 3

2
τkinknj − 3

2
τkjnkni) fw

+ cw2 (Φ2
klnknlδij − 3

2
Φ2
iknknj − 3

2
Φ2
jknkni)fw (16)

The terms on the right-hand side of equation (10) are identified as diffusion, production by the
mean flow, production caused by rotation, dissipation, slow redistribution, rapid redistribution and
wall reflection. In this model, the local effects of flowfield anisotropy near wall are incorporated
in the modeled term Φ1

ij + Φ2
ij − 2/3ρ̄δij , contrary to other models which take into account the

anisotropy of the dissipation tensor [22]. In these expressions, k = τii/2 is the turbulent kinetic
energy, aij = (τij − 2

3kδij)/k is the anisotropy tensor, c1, c2, cw1 , cw2 are functions which depend
on the second and third invariants A2 = aijaji, A3 = aijajkaki, the flatness coefficient parameter
A = 1− 9

8(A2 −A3) and the turbulent Reynolds number Rt = k2/νε. The dissipation rate ε in
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c1 1 + 2.58AA
1
4
2 (1− exp(−(0.0067Rt)

2))

c2 0.75A
1
2

cw1 −2
3
c1 + 1.67

cw2 max(2
3
c2 − 1

6
, 0)/c2

fw 0.4k
3
2/εx2

ψ −cε1/8 < 1.5A
(
Pii

2ρ̄ ε
− 1
)
< cε1/8

Table 1: Functions used in the RSM model.

expression (10) is computed by means of the transport equation:

∂

∂t
(ρ̄ε) +

∂

∂xj
(ρ̄ũjε) = J − (cε1 + ψ)ρ̄

ε

k
τij
∂ũj
∂xi
− cε2ρ̄

ε̃ε

k
(17)

where

J =
∂

∂xi

(
µ̄
∂ε

∂xi
+ cερ̄

k

ε
τij

∂ε

∂xj

)
(18)

and ε̃ = ε− 2ν(∂
√
k/∂x2)2. The diffusive terms are modeled by a gradient hypothesis:

σiju′′i −
1

2
ρ̄ ũ′′ku

′′
ku
′′
j = (µ̄δjm + csρ̄

k

ε
τjm)

∂k

∂xm
(19)

The heat transfer of the turbulent flux is computed as:

h̃′′u′′i = −cµk
2

ε

cp
Prt

∂T̄

∂xi
(20)

where cp and Prt are the specific heat at constant pressure and the turbulent Prandtl number,
respectively. The functions used in that model are listed in table 1. Values of the constant
coefficients are cs = 0.22, cε1 = 1.45, cε2 = 1.9, cε = 0.18, cµ = 0.09. This model has already given
good results in predicting rotating flows [18].

4 Numerical method

The finite volume technique is used to solve the full equations incorporating all the derivative terms.
The numerical discretization scheme is second-order accurate in space and the time advancement
uses a three-step Runge-Kutta method which is appropriate for simulating unsteady flows. A fixed
pressure boundary condition is applied at the exit section of the channel. Boundary conditions for
impermeable walls assume zero velocity and constant temperature, zero turbulent kinetic energy
and the wall dissipation rate value εw = 2ν(∂

√
k/∂x2)2. For a permeable wall, a constant mass flow

rate is imposed at the same temperature as the impermeable wall. Experimental measurements in
the immediate vicinity of the permeable wall show that the velocity follows a Gaussian distribution.
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Figure 2: Axial variations of the coefficient β. ◦: experimental data. dot-dashed-line: σs = 0.1,
dotted-line: σs = 0.2, dashed-line: σs = 0.3, long-dashed-line: σs = 0.4, solid-line: σs = 0.5

Investigations indicate also that the amplitude of the fluctuating velocity increases with increasing
injection velocity [21]. From a physical point of view, the fluctuating part of the velocity is due
to the injected fluid passing through the porous plate made of small bronze spheres and by the
acoustics of the cavity. Based on these considerations, the boundary condition has been modeled
by a twofold hypothesis. The first effect is taken into account by introducing a modeled turbulence

level at the wall related to the mean injected velocity as σs = (ũ′′2u
′′
2/ũ

2
s)

1/2. It is assumed that
the material porosity is fine grained (8µm). The second effect which is not a turbulent effect is
produced by a forcing with a Gaussian velocity distribution P (u) in time but constant in space.
The forcing is thus applied directly to the near wall mean velocity. Another point to emphasize
concerns the pressure fluctuations of the flowfield. Considering that the permeable wall does not
reflect the pressure fluctuations, the term Φw

ij of equation (16) is suppressed in the direction normal
to the wall.

5 Numerical results

5.1 Steady flow regime

The objective is to reproduce the steady flow which evolves spatially from laminar to turbulent
regimes. Due to the mass conservation equation, the flow Reynolds number Rm = ρmumδ/µ based
on the bulk density ρm and the bulk velocity um varies linearly with the axial distance along
the channel so that it can be computed as Rm = mx1/µ. It ranges from zero to approximately
9 x 104. Numerical simulations are performed on refined meshes requiring 100 × 100, 200 × 200
and 200 × 300 nonuniform grids in x1 and x2 directions. For all the meshes, the grid in the normal
direction x2 is distributed using two geometric progressions from the wall to the center of the
channel. For instance, the transverse resolution for the mesh 100 × 100 is 1 µm near the walls and
200 µm in the center of the channel. The dimensionless distance x+

2 = x2uτ/ν between the first

7



0 20 40 60 80

u
1
/u

s

0.0

0.2

0.4

0.6

0.8

1.0

x
2
/δ

Figure 3: Mean dimensionless velocity profiles in different sections. σs = 0.2; Symbols: experimental
data; solid line: RSM. 22 cm: �; 45 cm: 2; 57 cm: ◦.

node and the wall is less than 0.3. In such conditions, this grid refinement provides full resolutions
for the flow in the permeable wall region and for the boundary layer generated by the rigid walls.
A grid-independence study was performed by checking the axial mean-velocity and the turbulence
intensity. For the boundary condition of the fluid injection, different values of the coeffcient σs
are considered. As a result, it is found that the effect of turbulence in injected fluid is to delay
or to anticipate the transition process of the flow. This is illustrated in Figure (2) which shows,
for different values of the injection paramater σs, the evolution of the integral momentum flux
coefficient defined by :

β =
ρδ
∫ δ

0 ρ̄ũ
2
1dx2(∫ δ

0 ρ̄ũ1dx2

)2 (21)

The rapid drop of the coefficient β corresponds to the transition location. It can be noticed that
the lower turbulence level σs = 0.1 is too small to trigger the transition process. This Figure
reveals a qualitative agreement with the experimental data. Figure (3) shows the evolution of the
dimensionless mean velocity profiles in different sections of the channel for the computation using
σs = 0.2. The profile located in the section x1 = 22 cm appears to be quite laminar whereas the
profiles corresponding to the sections at 45 cm and 57 cm are found to be turbulent. The general
shapes of the profiles display a good agreement with experimental data. Figures (4a), (4b) show,
respectively, the streamwise and normal turbulent velocity fluctuations normalized by the bulk

velocity (ũ′′1u
′′
1)1/2/um, (ũ′′2u

′′
2)1/2/um in different sections. One can observe that the RSM model

predicts fairly well the turbulence intensity which evolves from zero to approximately ten percent
of the bulk velocity um. Note that previous computations of similar flow using a k− ε model have
overpredicted the turbulence intensity by about 300 % in the post-transition zone [11, 12].
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5.2 Unsteady flow regime

Several predictions of the oscillatory flowfield with natural instabilities are performed on meshes
taking into account 600 × 100 and 600 × 200 non-uniform grids. The experiment has shown that
this natural instability results in the development of near wall vortex structure. Thus, the grid is
refined in the x1 direction in order to reproduce accurately these flow vortices. For the computation,
2 ×106 temporal iterations which represents 0.2 s of time are performed. The experimental pressure
signal spectrum plotted in Figure (5) indicates that the flow presents a resonant regime at the
frequency f = 407 Hz [21]. This is quite close to the frequency f1 = 3ao/4L = 426 Hz which
corresponds to the second longitudinal acoustic mode 3λ/4 of the cavity. In this expression,
the quantity ao denotes the sound velocity. Indeed, visualisation tests [23] show the emission of
flowfield vortices at this frequency. Therefore, the flow is characterized by an acoustic resonant
regime. In general, the wavelength solutions of the Helmholtz equation are λn = 4L/(2n+ 1) and
the frequencies are fn = (2n+ 1)a0/4L. For the values n = 0, 1, 2, the first frequencies are 142, 426
and 711 Hz. It can be mentionned that the dimensionless resonant frequency is Ω∗ = 2πδf1/us = 30
whereas the dimensionless critical frequency obtained by the linear stability analysis is Ω∗c ≈ 18.5
[1]. In the computation, the Gaussian forcing has been artificially generated through fluctuating
velocities u′1 = α ū1 P1, u′2 = α ū2 P2 where P1 and P2 are Gaussian distributions and the quantity
α is a numerical coefficient. These distributions are obtained by P1 = t1 cos(2πt2) and P2 =
t1 sin(2πt2), where t1 =

√
−2 ln t3, t2 and t3 are uniform random numbers in the interval [0,1] [24].

The distribution of the probability function P1, (similary for P2), is represented on Figure (6) for
106 events. In order to reproduce the level of the experimental noise, the coefficient α is assigned

a value 0.02. As for the previous steady flow prediction, an injected turbulence intensity ũ′′2u
′′
2

related to the porous material properties is also introduced at the wall. One result of interest is
that the flow regime remains stable if no Gaussian forcing is imposed in the flowfield, regardless the
intensity of the injected turbulence. Therefore, in order to trigger the instabilities, the Gaussian
forcing has been applied and periodically refreshed in the immediate vicinity of the permeable
wall. This technique was previously developed by Lupoglazoff and Vuillot for simulating this flow
in laminar regime [25]. The present computed unsteady pressure signal is plotted on Figure (7).
Figure (8) shows the head-end pressure spectrum that reveals the presence of the mode 3λ/4. The
fluctuating pressure peaks occur at 403 Hz and 422 Hz, with a resolution frequency of 5 Hz. The
following modes λ/4, 7λ/4 and 9λ/4 are also observed on this Figure. Although the resonance
frequency is well predicted, a discrepancy in the magnitude of the pressure fluctuations is observed
between the experimental and computed signals in Figure (5) and Figure (8). This is due to the
poral response or admittance which consists in adjusting the injected mass flow rate as a function
of the local pressure [25]. However, in the present work, a zero poral response has been considered
for the sake of simplicity which should explain the over-estimated level. Figures (9a), (9b), (9c)
show the instantaneous vorticity contours ω̄i = εijk∂ūk/∂xj in the whole flow domain in the real
scale at different time advancement t = T1/4, t = T1/2, t = 3T1/4 where T1 = 1/f1 = 0.00248 s
is the time period of the signal. The development of the acoustic boundary layer characterized by
horizontal lines as well as the parietal vortex shedding of growing size which results from natural
instabilities are well observed in the channel. The structures are visible in the final part of the
channel and move toward the open exit. It can be seen that the intensity of the vortices increases
with the downstream distance. Figures (9d) (9e) (9f) show the enlarged view of the instantaneous
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Figure 9: Instantaneous vorticity contours at different times: t = T1/4, t = T1/2, t = 3T1/4. (a),(b),(c):
animation of real aspect ratio view; (d),(e),(f): animation of enlarged view.
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Figure 10: Instantaneous entropy contours at different times: t = T1/4, t = T1/2, t = 3T1/4. (a),(b),(c):
animation of real aspect ratio view; (d),(e),(f): animation of enlarged view.
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Figure 11: Instantaneous pressure contours at different times: t = T1/4, t = T1/2, t = 3T1/4. (a),(b),(c):
animation of real aspect ratio view; (d),(e),(f): animation of enlarged view.
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Figure 12: Enlarged view of the turbulent Reynolds number contours Rt = k2/νε. 0 < Rt < 1620.

Figure 13: Enlarged view of the instantaneous vorticity contours for the k − ε model.

16



vorticity contours near the exit of the channel and reveal the flow structures. It is of interest to
note that these structures are quite similar to those obtained by experimental imaging technique
using Acetone Planar Laser-Induceed Fluorescence (PLIF) [23]. Note that LES technique has also
produced similar structures for a flow inside a plane channel included inclined backward-facing
traling edge with a simplifed nozzle [26]. The evolution of the mean vorticity can be explained by
its transport equation (22) in unsteady flow regime :

∂ω̃i
∂t

+ ũj
∂ω̃i
∂xj

= ν
∂2ω̃i
∂xj∂xj

− ∂

∂xj

(
ω′′i u

′′
j

)
+ ω̃jS̃ij + ω′′j S

′′
ij +O (22)

where O represents the term of compressible flow effects which can be neglected in the present case
due to the low Mach number value which is lower than 0.25. For a two-dimensional computation,
the mean vorticity is along the spanwise direction ω̃3 = (∂ũ2/∂x1 − ∂ũ1/∂x2). It is created by the
interaction between the flow injected in the normal direction to the permeable wall and the flow
coming from the head end of the channel in the streamwise direction. The vorticity is convected by
the main flow velocity and modified by the laminar and turbulent diffusion processes as indicated
by equation (22). The gain or loss of the mean vorticity is influenced by the correlation term ω′′j S

′′
ij

composed of the fluctuating vorticity components and by fluctuating strain rates. The vortex-
stretching contribution ω̃jS̃ij is reduced to zero for two-dimensional mean flow. The convection
velocity of the vortex has been computed by considering the passage of the vortex through some
cross sections of the channel at different time advancements. It is of interest to note that the ratio of
the convection velocity to the bulk velocity in the channel takes the approximate value 0.76. Note
that the bulk velocity has been considered in that case because the local flow velocity presents too
high variations versus the channel height as previously observed in Figure (3) although it relates
the previous computation for the steady flow. This result regarding the different velocity for the
fluid and the vortex corresponds to usual case of flow physics. Figures (10a) (10b) (10c) describe
the instantaneous entropy contours in the whole flow domain and illustrates the instabilities of
the boundary layers near the permeable wall. Figures (10d) (10e) (10f) show the enlarged view
of the entropy contours and describe the instantaneous coherent eddies of the flowfield. Figures
(11a) (11b) (11c) show the pressure contours of the whole flow domain. These figures reveal that
the pressure is almost uniform in each cross section of the channel. Enlarged view of the pressure
contours are observed on Figures (11d) (11e) (11f). It is verified that the passage of the vortices
locally tends to decrease the static pressure. Figure (12) shows the contours of the turbulent
Reynolds number and reveals that the turbulence is mostly developed near the impermeable wall
in comparison with the permeable wall region. The turbulent Reynolds number Rt = k2/νε ranges
from zero to the approximate value 1600. Other numerical flows predictions have been computed
using first order turbulence model such as k − ε with a low Reynolds number formulation for
appoaching walls [27]. For the same boundary conditions than for the RSM computation, one can
notice that the k−ε model is not able to reproduce the large flow structures, as indicated in Figure
(13) which shows enlarged view of the instantaneous vorticity contours [28]. Explanation of that
results should be attributed to the dissipative behavior of the scalar turbulent eddy viscosity in
the k− ε model which has the effect of smoothing the instabilities. In the present case, it has been
demonstrated that second order turbulence model has better properties than first order turbulence
model.
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6 Conclusion

An advanced second-order turbulence model has been used to compute flows with complex physics,
such as strong effects of the streamlines curvature caused by the fluid injection, different flow
regimes from laminar to turbulent, transition, unsteady flow involving an acoustic resonance. Both
steady and unsteady flows are fairly well predicted numerically by RSM model in good agreement
with the experiments. For the steady flow, it has been found that the Reynolds stress model is
able to reproduce the mean velocity profile, the transition process and the turbulent stresses. For
the unsteady flow, it has been demonstrated that the RSM turbulence model is able to generate
the vortex shedding mechanism which results from natural instabilities. The coherent structures of
the computed flow have been visually observed in agreement with experimental flow visualizations.
Other computations show that first order turbulence model such the k−ε is not suited for predicting
both steady and unsteady flows in SRM.
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