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Abstract

We apply the partially integrated transport modeling (PITM) method with a stress transport
subfilter model [Chaouat, B. and Schiestel, R., “A new partially integrated transport model for
subgrid-scale stresses and dissipation rate for turbulent developing flows”, Physics of Fluids, Vol.
17., 2005] to perform continuous hybrid non-zonal RANS/LES numerical simulations of turbulent
flows over two-dimensional periodic hills at high Reynolds number Re = 37000 on coarse and
medium meshes. The fine scale turbulence is described using a subfilter scale stress transport
model deduced from PITM. This work extends the previous simulations of the turbulent flow over
periodic hills performed at the lower Reynolds number Re = 10595 [Chaouat, B., “Subfilter-scale
transport model for hybrid RANS/LES simulations applied to a complex bounded flow ”, Journal
of Turbulence, Vol. 11, 2010] to the higher value 37000 considering that studying the effects of the
Reynolds number on the turbulence field constitutes a new material that deserves interest in CFD.
So that, the aim of this paper is to explore the extension of a PITM subfilter model to high Reynolds
numbers where conventional LES is not any more accessible because of the highly consuming cost.
The effects of the grid refinement at Re = 37000 are investigated in detail through the use of differ-
ent mesh sizes with a very coarse grid and with a several medium grids. For comparison purposes,
the channel flow over 2D hills is also computed using a full statistical Reynolds stress transport
model developed in RANS methodology. As a result of the simulations, it appears that the PITM
simulations, although performed on coarse meshes, reproduce this complex flow governed by inter-
acting turbulence mechanisms associated with separation, recirculation, reattachment, acceleration
and wall effects with a relatively good agreement. The mean velocity and turbulent stresses are
compared with reference data of this experiment at the flow Reynolds number Re = 37000 [Rapp,
Ch. and Manhart, M., “Flow over periodic hills - an experimental study ”, Experiments in Fluids,
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Vol. 51., 2011]. Some discrepancies are observed in the immediate vicinity of the lower wall for
the coarse simulations but as it could be expected, the simulation performed on the medium mesh
provides better results than those performed on the coarse meshes thanks to the higher resolution
due to the grid refinement in the streamwise and spanwise directions that allows a better account of
the three-dimensional character of the flow. As usual in LES calculations, the instantaneous large
flow structures are investigated in detail providing some interesting insights into the structures of
the present turbulent flow. Comparatively to the PITM simulation results, it is found that the
RANS Reynolds stress model based on second moment closures fails to predict correctly this flow
in several respects, although being one of the most advanced model in RANS methodology. Im-
portant discrepancies with the experimental data are noticed. This work suggests that the present
subfilter-scale stress model derived form the PITM method is well suited for simulating complex
flows at high Reynolds numbers, with a sufficient accuracy from an engineering point of view, even
if the grids are not as so fine as those used in conventional LES, while at the same time allowing
a drastic reduction of the computational cost. Beside, these calculations give some ideas on the
influence of the Reynolds number on the flow.

1 Introduction

Usually, the Reynolds averaged Navier-Stokes (RANS) methodology based on a statistical averaging
(or in practice a long-time averaging which is sufficiently large in comparison with the turbulence
time scale [1]) and particularly the route of advanced Reynolds stress transport modeling (RSM)
developed in the framework of second-moment closures (SMC)[2, 3], appears as an efficient way for
tackling engineering flows encountered in aeronautics applications with reasonable computational
costs [4]. However, although reaching a high level of sophistication in RANS methodology, RSM
models may show some weaknesses in simulating turbulent flows in which the unsteady large scales
play an important role. This happens in particular situations where the mean flow quantities are
strongly affected by the dynamic of large scale turbulent eddies [5, 6, 7]. Indeed, RANS models
seem working well in flow situations where the time variations in the mean flow are of much lower
frequency than the turbulence itself. This is the favored field of application of RANS and unsteady
RANS (URANS). On the other hand, highly resolved large-eddy simulation (LES) which consists
in modeling the more universal small scales while the large scales motions are explicitly calculated,
is a promising route. It is now largely developed [8] when insight in the turbulence structure is
required. But, up to now, the LES approach is not affordable for industrial applications involving
large computational domains, even with the rapid increase of super-computer power [9]. For in-
stance, an LES simulation of the flow around an entire aircraft still remains out of scope at present
time. This problem is particularly acute at high Reynolds numbers since the Kolmogorov scale

decreases according to the R
−9/4
t law. For these reasons related to high computational costs, new

turbulence approaches that combine the advantages of both RANS and LES methods have been
recently proposed to simulate engineering or industrial flows. They are essentially based on hybrid
zonal methods for which a thorough review conducted by Fröhlich et al. can be found in reference
[10]. Among these hybrid RANS/LES methods, the detached eddy simulation (DES) developed by
Spalart and co-authors [9, 11], or in an improved version, the delayed DES [12], where the model
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is switching from a RANS behavior to an LES behavior, depending on a criterion based on the
turbulent length scale, is certainly one of the most popular models. As a practical method for
handling aeronautical applications, DES is often used to simulate flows around obstacles with the
aim to access global coefficients such as the drag, lift and pressure coefficients which are useful
in the aerodynamic design optimization of aircraft wings. One can also also mention the scale-
adaptive simulation (SAS) model developed recently [13]. Still from a practical point of view, the
DES technique was recently applied to derive the zonal SST-DES model [14] inspired from the
SST model developed by Menter [15]. This model has been used for simulating flows around a
complete aircraft without and with engine nacelle. Some other RANS/LES zonal methods have
also been developed in this spirit but they rely on two different models, a RANS model and a
subgrid-scale model, which are applied in different domains separated by an artificial interface
[16, 17, 18]. Although zonal hybrid RANS/LES models are of practical use in a general way, allow-
ing a reduction of the computational cost compared to conventional LES, the RANS/LES interface
still poses matching problems between the RANS and LES regions. The interface is empirically
located inside the computational domain and the turbulence closure suddenly changes from one
region to another adjacent one without continuity when crossing the interface. Furthermore, these
methods often require an internal forcing produced by artificial instantaneous random fluctuations
for restoring continuity of turbulence levels at the crossflow between these domains. Extra terms
introduced in the equations are then necessary to get the correct velocity and stress profiles in the
boundary layer [10, 19]. The question of the log-layer mismatch velocity for hybrid RANS/LES
simulations has been addressed in detail by Hamba in reference [20].

In the field of hybrid RANS-LES methods, Schiestel and Dejoan [5], and Chaouat and Schiestel
[6, 21] have developed the partially integrated transport modeling (PITM) method with seamless
coupling changing smoothly from RANS to LES in different regions in order to overcome the dif-
ficulties raised by zonal models mentioned above. From this method, these authors have derived
subfilter turbulence models, the former one using an energy transport model with a subfilter vis-
cosity and the latter one using a stress transport model based on second-moment closure (SMC).
From a physical standpoint, this method has been derived in the spectral space by considering
the Fourier transform of the dynamic equation for the two-point velocity fluctuating correlations
[22]. Then, partial integration of these spectral equation gives rise to subfilter turbulence models
including a new transport equation for the dissipation rate which constitutes the main ingredient
of the PITM method. Contrarily to zonal hybrid RANS/LES models, the subfilter models derived
from the PITM method vary continuously from RANS to LES with respect to a parameter formed
from the ratio of the turbulent length-scale to the grid-size Le/∆ so that there are no discrete
interfaces between the RANS and LES regions. Almost any usual statistical RANS model can be
transposed into its subfilter version, using the PITM method. In turbulence modeling, subfilter
scale stress transport models developed in the framework of SMC [6, 7, 23, 24] are probably among
the most elaborated models transposed from RSM models [25, 26]. Indeed, the use of transport
equations for the subfilter-scale stress components allows to take into account more precisely the
turbulent processes of production, transfer, pressure redistribution effects and dissipation, in a
better way than eddy viscosity models. Due to the presence of the material derivative in the stress
transport equations, the subfilter-scale stress model is able to account for some history effects in
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the turbulence interactions, and also due to the presence of pressure-strain correlation terms, to
describe more faithfully the anisotropy of the turbulence field. Moreover, some backscatter effects
can possibly arise because the production term in the stress equations can indeed become negative
in some places, contrarily to what happens in two equation closures based on eddy viscosity in
which the production term is strictly positive. Consequently, subfilter stress models offer various
interesting potentialities for simulating non-equilibrium unsteady flows. Subfilter-scale stress mod-
els are however more often used in research codes rather than in industrial numerical simulation
codes, the reason being that viscosity models accounting for two transport equations are obviously
easier to implement and to run in CFD codes than Reynolds stress models accounting for seven
strongly coupled equations in unsteady flow evolution. [27]. Moreover, second moment turbulence
closure may pose some numerical difficulties. Indeed, in two equation eddy viscosity models, the
turbulence stresses are usually treated numerically as diffusion terms that have a stabilizing effect
in the momentum equation, whereas in second moment closures, the stresses are numerically in-
tegrated as external source terms that have in the contrary a destabilizing effect on the motion
equation. We will see in the following what stabilization techniques have been used for overcoming
these difficulties. The PITM concept for the dissipation rate equation is also particularly appealing
for turbulent flows with some departures from the standard Kolmogorov equilibrium law while us-
ing relatively coarse grids [21, 23]. Furthermore, these models can also be used in the perspective to
investigate turbulent flows with emphasis on fundamental aspect and structural aspects, together
with statistical post-analysis based on two-point correlations and spectral properties. Of course, it
is not expected to get the accuracy of conventional fine grid LES in the structural description, but
some useful trends are however possible, as exemplified further, the aim being to get acceptable
results while reducing the computational cost. Another approach is the PANS (partially averaged
Navier-Stokes) method [28] based on the self-similarity scale assumption which in fact leads to
transport equations that look very similar to the ones obtained from the PITM method but they
have been developed in a totally different line of thought and different arguments. Moreover, the
PANS model does not provide a defined link between the model equations and the filter size since
the ratio of the subfilter-energy to the total energy is arbitrarily prescribed. The results are then
depending on this prescribed ratio and the role of the filter is disconnected and cannot be clearly
interpreted from a physical point of view. This is not satisfactory on the physical point of view,
as it was discussed in detail in reference [29].
This paper first briefly recalls the main principles of the partially integrated transport modeling
method developed in the spectral space. Then hybrid RANS/LES numerical simulations of the
turbulent flow over periodic hills are performed on coarse and medium meshes at a high Reynolds
number Re = 37000. This test case of a channel with streamwise periodic constrictions and sep-
aration is of practical interest in the field of aerodynamic applications because of the presence
and interaction of turbulence mechanisms associated with separation, recirculation, reattachment,
acceleration and wall vicinity effects that are often encountered in industrial and aerospace flows.
A special attention is therefore devoted to these mechanisms occurring in the flow at the high
Reynolds number Re = 37000 comparatively to those previously studied at a lower Reynolds num-
ber Re = 10595 [7, 30, 31]. For comparison purposes, RANS computations of the same channel flow
over 2D hills using a statistical Reynolds stress model are also performed on the coarse mesh, also
at the same Reynolds number Re = 37000. For each simulation, the mean velocity and turbulent
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stresses components returned by the PITM simulation and the RSM prediction are compared with
the experimental data at Re = 37000 obtained by Rapp [32, 33]. The conditions of realizability of
the turbulent stresses are checked from a few solution trajectories projected onto the plane formed
by the second and third invariants in the diagram of Lumley [34]. This also allows to assess the
turbulence model in its capability to reproduce correctly the flow anisotropy by determining the
possible turbulence states in this diagram. With the aim to investigate the flow from a spectral
point of view, energy spectrum densities are performed using the Fourier transform of the instan-
taneous velocities. The two-point fluctuating velocity correlations are computed in the spanwise
direction of the channel to get statistical information. Moreover, interest is then placed on some
structural aspects of this complex flow.

2 The filtering and averaging processes

Turbulent flows of a viscous incompressible fluid are considered. In large eddy simulations, any
flow variable φ is decomposed into a large scale (or resolved) part φ̄ and a subfilter fine scale (or
modeled) part φ>. Both are fluctuating. The large scale component is defined by the filter function
G∆ as

φ̄(x) =

∫ ∫ ∫
D
G∆(x− y)φ(y) d3y (1)

where ∆ denotes the filter width. In view of the statistical averaging process, the instantaneous
variable φ can also be decomposed into a statistical mean part 〈φ〉 and a fluctuating part φ′ leading
to φ = 〈φ〉+ φ′. The instantaneous fluctuation φ′ contains in fact the large scale fluctuating part
φ< and the small scale fluctuating part φ> such that φ′ = φ< + φ>. So that φ can then be
rewritten as the sum of a mean statistical part 〈φ〉, a large scale fluctuating part φ< and a small
scale fluctuating part φ> as follows φ = 〈φ〉 + φ< + φ>. The first two terms correspond to the
filtered velocity φ̄ = 〈φ〉+φ< implying that the large scale fluctuating part is simply the difference
between the filtered and the statistical quantities, φ< = φ̄−〈φ〉. In fact, the large scale fluctuations
(resolved scales) and the fine scales fluctuations (modeled scales) can be naturally defined from
the physical meaning of the Fourier transform of the fluctuating quantities φ′ using the cutoff
wavenumber κc as the lower bound of the integration interval. Indeed, if working in spectral space,
the large scale φ< and the fine scale φ> are then defined from the Fourier transforms as [22]

φ<(x) =

∫
|κ|≤κc

φ̂′(κ) exp (jκx) dκ (2)

φ>(x) =

∫
|κ|≥κc

φ̂′(κ) exp (jκx) dκ (3)

where the Fourier transform φ̂′(κ) is defined as usually from

φ̂′(κ) =
1

(2π)3

∫
R3

φ(x) exp (−jκx) dx (4)

Note that all the previous relations are exact only in homogeneous turbulence and only approximate
in locally homogeneous turbulence [22]. Applying the filtering operation to the instantaneous
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Navier-Stokes momentum equation yields the filtered equation

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂(τij)sfs
∂xj

(5)

where ui, p, ν, (τij)sfs, are the velocity vector, the pressure, the molecular viscosity and the
subfilter-scale stress tensor, respectively. The subfilter-scale tensor (τij)sfs is defined by the math-
ematical relation

(τij)sfs = uiuj − ūiūj (6)

The presence of the turbulent contribution (τij)sfs in equation (5) indicates the effect of the subfilter
scales on the resolved field. The resolved scale tensor is defined by the relation

(τij)les = ūiūj − 〈ui〉 〈uj〉 (7)

It can be shown that for spectral cutoff filters defined from the Fourier transform [35, 36], the large
scale and small scale fluctuations are uncorrelated and the full Reynolds stress tensor τij including
the small and large scale fluctuating velocities can be computed as the sum of the subfilter and
the resolved stress tensors

τij = 〈(τij)sfs〉+ 〈(τij)les〉 (8)

whereas the statistical turbulent kinetic energy is obtained as the half-trace of the stress tensor τij
leading to

k = 〈ksfs〉+ 〈kles〉 (9)

The relationships (2) and (3) are strictly valid for homogeneous turbulence and still remain how-
ever a good approximation in the case of non-homogeneous turbulence. As usually made in LES
simulations, the statistical average of the resolved stresses 〈(τij)les〉 which corresponds to the ve-

locity correlation in the large scale fluctuations
〈
u<i u

<
j

〉
appearing in equation (8) is computed by

a numerical procedure using the relation

〈(τij)les〉 =
〈
u<i u

<
j

〉
= 〈ūiūj〉 − 〈ūi〉 〈ūj〉 (10)

3 Application of the PITM method

3.1 General formalism

The PITM method finds its basic foundation in the spectral space by considering the Fourier
transform of the two-point fluctuating velocity correlation equations in homogeneous turbulence
[5, 22], the extension to non-homogeneous turbulence being developed within the framework of the
tangent homogeneous space [22, 37]. Along the same guidelines, a formalism based on a temporal
filtering has been also proposed recently to handle non-homogeneous flows leading to a variant of
the PITM method using temporal filters and called temporal partial integrated transport modeling
(TPITM) method [24]. The resulting equations are similar in practice. The PITM method is
general and allows to derive subfilter scale models with the aim to perform continuous hybrid
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non-zonal RANS/LES simulations regardless of the filter width. This is particularly interesting
for relatively coarse grids (as far as the grid size is sufficient to describe correctly the mean flow
!). These derived subfilter models include both energy transport models using a subfilter eddy
viscosity coefficient [5, 38, 39] and stress transport models [6, 7, 23, 24], depending on the chosen
level of closure. In the present case, a Reynolds stress transport model inspired from the Launder
and Shima well known model [25] has been considered and then turned into a subfilter scale
stress transport model. It is based on the transport equations for the subfilter-scale stresses
(τij)sfs and the subfilter transfer rate εsfs and constitutes therefore in its formulation one of the
most elaborated model used in LES methodology [23]. As a result, it formally looks like the
corresponding RANS/RSM model but the coefficients used in the model are no longer constants.
They are now some functions of the dimensionless cutoff parameter ηc = κcLe involving the cutoff
wave number κc = π/∆ and the integral turbulent length scale Le = k3/2/ε built using the total
turbulent kinetic energy k = 〈ksfs〉 + 〈kles〉, the total dissipation rate ε = 〈εsfs〉 + 〈ε<〉, itself
composed of the subfilter transfer rate εsfs and the resolved large scale dissipation rate ε< which
becomes not negligible in low Reynolds number flows. In order to account in a simple way for the
anisotropy of the grid near the walls, the effective filter ∆ is defined by [40]

∆ = ζ∆a + (1− ζ)∆b (11)

where the filters lengths ∆a and ∆b are defined by ∆a = (∆1∆2∆3)1/3 and ∆b = [(∆2
1 + ∆2

2 + ∆2
3)/3]1/2

and where ζ is a parameter set to 0.8.

3.2 Subfilter scale stress transport equation

By using the material derivative operator in the filtered field D/Dt = ∂/∂t+ūk∂/∂xk, the transport
equation for the subfilter stress tensor can be written in the simple compact form as

D(τij)sfs
Dt

= Pij + Πij + Jij − (εij)sfs (12)

where the terms appearing in the right-hand side of this equation are identified as production,
redistribution, diffusion and dissipation, respectively. The transport equation for the subfilter
turbulent energy is obtained as half the trace of equation (12)

D(ksfs)

Dt
= P + J − εsfs (13)

where P = Pmm/2, J = Jmm/2, εsfs = (εmm)sfs/2. The precise expressions of the terms Pij , Πij

and Jij appearing in equation (12) are recalled in appendix A.

3.3 Subfilter dissipation-rate transport equation

Closure of equation (12) needs to model the subfilter tensorial transfer rate (εij)sfs which is ap-
proached by 2/3εsfsδij . The modeling of the transfer-rate εsfs is made by means of its transport
equation which is obtained from the PITM method using spectral splitting techniques and partial
integrations. This transfer-rate equation formally looks like the usual dissipation-rate equation
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used in statistical models but the coefficients are no longer constants and differ in their numeri-
cal values. As a result of the modeling procedure [5, 6], the transport equation for the subfilter
transfer-rate reads

Dεsfs
Dt

= csfsε1
εsfs
ksfs

P − csfsε2
εsfsε̃sfs
ksfs

+ Jε (14)

where Jε denotes the diffusion term (see appendix A) and where ε̃sfs = εsfs − 2ν(∂
√
ksfs/∂xn)2

includes the usual empirical near wall correction used in statistical models and in which xn de-
notes the coordinate normal to the wall. In this equation, the coefficient csfsε1 appearing in the
source term of the transfer-rate equation is the same as the one used in the corresponding RANS
dissipation equation csfsε1 = cε1 whereas the coefficient csfsε2 appearing in the destruction term of
the transfer-rate equation is now given by

csfsε2 = cε1 +
〈ksfs〉
k

(cε2 − cε1) (15)

where cε2 is the constant used in the statistical RANS dissipation-rate equation. The ratio 〈ksfs〉 /k
appearing in equation (15) is evaluated by reference to an analytical energy spectrum E(κ) inspired
from a Von Kármán spectrum considered as a limiting equilibrium distribution. Analytical devel-
opments lead to the final result [23]

csfsε2(ηc) = cε1 +
cε2 − cε1

[1 + βη η3
c ]

2/9
(16)

Equation (16) indicates that the parameter ηc acts like a dynamic parameter which controls the
location of the cutoff within the energy spectrum and the value of the function csfsε2 then controls
the relative amount of turbulence energy contained in the subfilter range. The theoretical value of
the coefficient βη in equation (16) has been found to be βηT = [2/(3CK)]9/2 [5, 22] where CK is
the Kolmogorov constant.

4 Numerical method

4.1 Numerical schemes

The present numerical simulations are performed using an efficient research code [41] based on a
finite volume technique that has been previously tested on several laboratory and aerodynamic
laminar and turbulent flows. The software can handle both compressible flows and almost incom-
pressible flows. The equations are integrated in time using an explicit Runge-Kutta scheme of
fourth-order accuracy along with an implicit iterative scheme for solving the source terms. The
global scheme reads

Un+1 = Un + δt

K∑
k=1

βkG
(
U (k)

)
(17)

with
U (k) = U (k′) + αk δtS

(
U (k),U (k′)

)
(18)

8



where
U (k′) = Un + αk δtG

(
U (k−1)

)
(19)

In these equations, U is the vector for the mean and turbulent flow variables, G denotes the
convective and diffusive flux contributions, S corresponds to the source terms, αk and βk are
the Runge-Kutta coefficient values given by α1 = 0, α2 = α3 = 1/2, α4 = 1, β1 = β4 = 1/6,
β2 = β3 = 1/3, and the index (k) denotes the step of the Runge-Kutta method. At the beginning
of the procedure, U (0) = Un. The numerical method used to solve the instantaneous equations for
the subfilter scale turbulent stresses and transfer-rate equations deserves specific attention. Indeed
these equations are stiff and they are governed by highly non-linear source terms that evolve rapidly
in time and space in comparison with the convective and diffusive terms that present a smoother
variation. These equations pose some numerical difficulties in terms of stability and accuracy so
that an implicit iterative algorithms in time have been especially developed. The first step in the
numerical procedure consists in solving the equation for the subfilter turbulent energy (13) and the
equation for the subfilter transfer-rate (14) that are strongly coupled to each other. The equation
for the subfilter turbulent energy is indeed mathematically redundant with the stress equations
but this practice improves numerical stability. Afterward, in a second step, the individual subfilter
turbulent stress equations (12) are then solved using the preceding values found for ksfs and εsfs.
Considering the time advancement αk δt of equation (18), the turbulent equations for the subfilter
turbulent energy ksfs and the dissipation-rate εsfs are discretized implicitly in time by linearizing
the source terms as follows

kp+1
sfs − k

(k′)
sfs

αkδt
= P p − ωpsfs k

p+1
sfs (20)

and
εp+1
sfs − ε

(k′)
sfs

αkδt
= ωpsfs

(
cε1P

p − csfsε2ε
p+1
sfs

)
(21)

where ωsfs = εsfs/ksfs is the characteristic frequency of the turbulence leading to the solutions

kp+1
sfs =

k
(k′)
sfs + P pαkδt

1 + ωpsfsαkδt
(22)

and

εp+1
sfs =

ε
(k′)
sfs + cε1ω

p
sfsP

pαkδt

1 + csfsε2ω
p
sfsαkδt

(23)

where the turbulent variables are initialized by k1
sfs = k

(k′)
sfs and ε1sfs = ε

(k′)
sfs for p = 1. The

question now is to solve the transport equation (12) of the subfilter turbulent stress by an efficient
iterative algorithm. To do that, one can remark that this equation can be formally rewritten into a
linearized expression including only two different contributions in a such a way that the temporal
term ∂(τij)sfs/∂t becomes a function of the stress (τij)sfs appearing in the right-hand side of this
equation as follows

∂(τij)sfs
∂t

= Fij − c1 ωsfs (τij)sfs (24)
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where Fij denotes the tensorial function of the subfilter stress, dissipation rate and main velocity
gradient (see appendix A) that reads

Fij = Pij − c2

(
Pij −

2

3
Pδij

)
+

2

3
c1ωsfsksfsδij −

2

3
εsfsδij (25)

and where Pij is the production term caused by the interaction between the stresses and the
velocity gradients

Pij = −(τik)sfs
∂ūj
∂xk
− (τjk)sfs

∂ūi
∂xk

(26)

In equation (25), c1 and c2 are some functions of the invariant tensors defined in appendix A.
Equations (25) and (26) show clearly that Fij = Fij [ksfs, εsfs, (τik)sfs, (τjk)sfs]. Equation (24)
is then discretized under an implicit form with respect to the subfilter stress (τij)sfs taking into

account the preceding values kp+1
sfs and εp+1

sfs already computed by equations (22) and (23) as follows

(τij)
p+1
sfs − (τij)

(k′)
sfs

αkδt
= Fij [k

p+1
sfs , ε

p+1
sfs , (τik)

p
sfs, (τjk)

p
sfs]− c1 ω

p+1
sfs (τij)

p+1
sfs (27)

leading to the solution (τij)
p+1
sfs that finally reads

(τij)
p+1
sfs =

(τij)
(k′)
sfs + Fij [k

p+1
sfs , ε

p+1
sfs , (τik)

p
sfs, (τjk)

p
sfs]αkδt

1 + c1ω
p+1
sfs αkδt

(28)

or equivalently

(τij)
p+1
sfs =

(τij)
(k′)
sfs + [P pij − c2

(
P pij −

2
3P

pδij

)
+ 2

3(c1 − 1)εp+1
sfs δij ]αkδt

1 + c1ω
p+1
sfs αkδt

(29)

where the subfilter stress is initialized by (τij)
1
sfs = (τij)

(k′)
sfs for p = 1. The converged solutions of

the iterative algorithms are obtained when k
(k)
sfs = limp→∞ k

p
sfs, ε

(k)
sfs = limp→∞ ε

p
sfs and (τij)

(k)
sfs =

limp→∞(τij)
p
sfs. It has been checked that the numerical procedure allows to satisfy the trace

equality k
(k)
sfs = (τmm)

(k)
sfs/2 which is practically verified within two or three internal iterations in

practice. Written in these forms, the iterative algorithms (22), (23) and (29) remain stable because
of their denominators that are always greater than unity whatever the ksfs and εsfs values. This
numerical procedure is repeated at each step (k=1 to 4) of the Runge-Kutta method. The numerical
algorithms also present the advantage to ensure the positivity of the normal stresses and is able to
satisfy the weak form of the realizability constraints [42] in the mathematical sense given by the
condition [27]

c1 > 1− c2
P

εsfs
(30)

In practice, the inequality (30) is verified for usual cases of turbulent flows. Note however that
in the framework of SMC, and contrarily to first order models using the Boussinesq hypothesis,
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the positivity of the production term is not always guaranteed in all circumstances because some
backscatter effects are still possible. Regarding the discretization method in space, the numerical
scheme is based on a quasi-centered discretized formulation of the mean flow variables. It has a
fourth-order accuracy in space capable to accurately simulate the large scales of the flow. Using
equations (22), (23) and (29), it has been checked that the scheme remains of fourth-order ac-
curacy in time without introducing additional numerical dissipation. Another point to mention
is a convergence enhancement procedure that proved to be useful in practice. The aim of this
procedure is to avoid the model to reach a purely RANS or a purely LES limiting behavior during
the transitional initial phase of the calculation and also to accelerate the numerical convergence
towards the solution in the permanent state. This procedure [21, 43] consists in locally modifying
the coefficient csfsε2 in order to force the model to approach more rapidly the expected energy ratio,
it has been activated during the computations presented here. This procedure finds its physical
meaning in reference [29]. This does not alter the accuracy of the instantaneous solution.

4.2 CPU time requirements

The question of CPU time requirements is essential when performing LES simulations. As men-
tioned by Spalart [9], conventional LES simulation is limited in Reynolds number and still remains
out of scope at present time for high Reynolds number. This is one of the practical reasons that has
initially motivated the development of the PITM method. In the present case, the subfilter stress
model derived form the PITM method needs to solve seven equations for the vector components

U = [(τ11)sfs, (τ12)sfs, (τ13)sfs, (τ22)sfs, (τ23)sfs, (τ33)sfs, εsfs]
T , (31)

in addition to the Navier-Stokes equations. In practice, it has been found that the additional
cost requires roughly 30 % to 50 % more CPU time than conventional LES simulations using
eddy viscosity models such as, for instance, the dynamic Smagorinsky model (DSM) [44]. This
additional time is not really excessive. This is due to the fact that all the stress equations share the
same mathematical structure whatever the component (τij)sfs. All these equations can be written
in the same form including convection, diffusion and source terms. So that the system solution can
be efficiently optimized using vectorization and parallelization techniques [27]. In the past, several
flows encountered in engineering applications have been simulated using subfilter stress models
and DSM models. These flow simulations were performed on different grids and the computational
times required for these simulations were compared [6, 7, 21]. As a result, it had been found that
the higher cost necessary for solving the seven equation system was in fact greatly compensated by
the possibility of coarsening the mesh because of a better modeling. More precisely, the number
of grid-points can be reduced by a factor 5 to 10 but the additional cost is only multiplied by a
factor 1.5 so that the saving time is roughly 60-80 %. The details of these engineering simulations
are summarized in table IV of reference [21].
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5 Computational framework

5.1 Previous simulations on the flows over periodic hills

In the geometry under consideration, the hills constrict the channel by about one third of its total
height and they are spaced at a distance of about 9 hill heights as shown in figure 1. The exact
dimensions of the computational domain are D1 = 9h, D2 = 4.5h and D3 = 3.036h, where h
denotes the hill height, respectively in the streamwise, spanwise and normal directions. The flow is
naturally unsteady and is governed by the separation in wall boundary layer and three dimensional
wall effects. Initially, the flow over periodic hills at the Reynolds number Re = Ubh/ν = 10595
based on the hill height h and the bulk velocity Ub about the hill crest was proposed as a benchmark
case at the 10th joint “ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modeling ”[45]
for assessing the turbulence models ranging from RANS to LES. This benchmark has confirmed
that RANS models performed badly for this flow. Breuer et al. [31] performed direct numerical
simulations of this flow at Re = 700, 1400, 2800 and 5600 on several meshes ranging from 13.1
106 to 231 106 grid-points using both Cartesian and curvilinear codes. Breuer et al. [31] as well as
Fröhlich et al. [30] then performed highly resolved LES on a refined grid of 5 106 and 13.1 106 grid
points, respectively, using the dynamic Smagorinsky model (DSM) [44] and the wall-adapted local
eddy-viscosity (WALE) model [46] at Re = 10595. They provided some interesting features of this
turbulent flows and a useful reference data base. In the framework of turbulence modeling, Jakirlic
et al. [47] and Chaouat [7] more recently performed continuous non-zonal hybrid RANS/LES
simulations of this flow at Re=10595 on relatively coarse meshes of 2.5 105 and 106 grid points
using subfilter transport models derived from the PITM method. Although the coarse resolutions
of the grids used in the calculations, they all obtained promising results. In particular, the mean
flow variables, including the velocity, the shear stress and the turbulent energy were successfully
recovered and the flow structures were also qualitatively well reproduced by the subfilter-scale
stress model [7]. The flow over periodic hills at the higher Reynolds number Re = 37000 has been
investigated by experiment carried out by Rapp and Manhart [32, 33] in a water channel using
particle image velocimetry and laser-Doppler anemometry. These authors have measured the mean
velocity and turbulent stresses in different sections of the channel. As a result of interest, these
authors found that the reattachment length decreases with increasing the Reynolds number and
that the streamwise velocity develops an overshoot directly above the hill crest also with increasing
the Reynolds number. They observed that the mean streamwise velocity profiles become flatter
at a higher Reynolds number as shown in figures 24, 25, 26 and 27 from reference [33]. This
effect is particularly pronounced close to the reattachment point x/h = 4. Moreover, they found a
reduction of the Reynolds stresses level as the flow Reynolds number increases from Re=10600 to
37000 as shown in figures 29, 30, 33 and 34 of the reference [33]. Manhart et al. [48] have performed
numerical simulations of this flow at Re = 37000 on several meshes ranging from 1.0 106 to 4 106

grid-points, using both Cartesian and curvilinear codes, incorporating different turbulent models
such as the Smagorinsky model [49], the WALE model [46], the Lagrangian dynamic model [50],
the wavelet-based eddy-viscosity subgrid-scale model [51] and the model of Schumann based on
one transport equation for the subgrid energy [52]. In their paper, these authors have plotted the
mean velocity and shear stress profiles at a few stations in the channel. Although the flow was
not thoroughly investigated in all stations where experimental data [32, 33] are available, they
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Figure 1: Cross-section of the curvilinear grid 80× 100 of the contracted channel.

mentioned certain key features of their simulations in order to get a real comparative insight into
these model capabilities. At the Reynolds number Re = 37000, these simulations performed on the
refined Cartesian mesh of 4 106 grid-points using both the WALE and the Lagrangian models (see
figure 4 reference [48]) provided satisfactory velocity profiles at the stations x1/h = 0.05 and 4.0 but
the results obtained for the medium grid of 2 106 grid-points were however disappointing because
of the discrepancies observed with the reference data. Furthermore, these authors mentioned
in their paper that the Reynolds number dependence of the shear stress was hardly predicted
by all the LES simulations under consideration although the Lagrangian and the WALE models
provided however better results than the other ones. As expected, the Smagorinsky simulations
were unable to satisfactorily predict this flow, even if performed on the refined mesh including
some 4 106 grid-points. This outcome is not really surprising since the flow over periodic hills is
out of spectral equilibrium. That said, the present work will then focus on this higher Reynolds
number case Re = 37000 giving rise to new comparisons of the PITM simulations with the available
experimental data [32, 33].

5.2 Computational resources for DNS or highly resolved LES

As a direct numerical simulation of the flows over periodic hills was already undertaken at the
Reynolds number Re = Ubh/ν = 5600 [31], it is worth evaluating, as a rough guide, the necessary
computer resources for the Reynolds number Re = 37000 in terms of number of necessary grid-
points and computational times. A DNS simulation requires that the grid-size is at least of order
of magnitude of the Kolmogorov scale η computed as η = (ν3/ε)1/4. The computational time is
proportional to the number of grid points Nη, the number of temporal iterations Nit and the time
required by the central processing unit tCPU per iteration and per grid-point, leading to the result
t = NηNit tCPU . In this formula, the number of grid-points Nη is given by

Nη =
64D1D2D3

η3
(32)

in order to describe a “minimal ” sine curve on a full period using at least four grid points. The
number of iteration is given byNit = T/τ where T is the convective time allowing the eddies to move
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towards the exit of the channel, whereas τ is the Kolmogorov time scale given by τ =
√
ν/ε = η2/ν.

The convective time is computed from T = D1/Ub where D1 denotes the dimension of the channel
in the streamwise direction so that the computational time is therefore given by

t =
64D1D2D3

η3

D1

Ub

ν

η2
tCPU (33)

Although giving a somehow complex expression, equation (33) can be easily simplified if one
considers that the turbulent Reynolds number Rt = Le

√
k/ν = (Le/η)4/3 is proportional to the

mean flow Reynolds number Re = Ubh/ν in a restricted range of values. Setting Rt = ζ Re, where
ζ is an empirical coefficient usually close to 1/10 in confined flows (and in usual Reynolds numbers
range), and assuming that the size of the energetic big eddies Le = k3/2/ε is roughly of order of
magnitude of the characteristic geometrical size of the flow itself, equations (32) and (33) can be
reduced to more tractable expressions. The number of grid-points and the computational time are

then given respectively by Nη = 64R
9/4
t and t = 64 ζR

11/4
t tCPU , clearly showing their dependence

on the turbulence Reynolds number. Thus, for the two Reynolds numbers considered Re1 = 5600
and Re2 = 37000, one can find that the ratio of the numbers of grid points is Nη2/Nη1 ≈ 70
(Nη2 = 1600 106 grid-points if Nη1 = 231 106) whereas the ratio of the computational times is
t2/t1 ≈ 1800. These numerical order of magnitudes clearly shows that DNS (or even highly resolved
LES) imply a huge numerical task and still remains difficult to reach in practice at the present
time. Considering this fact, we have chosen to rely comparisons of the present PITM simulations
completely on experimental data. We stress again that this PITM method is particularly well suited
for performing simulations at higher Reynolds numbers without requiring very refined meshes.

5.3 The present simulation for the flows over periodic hills at
Re = 37000

The objective is to perform PITM simulations of the flow over periodic hills at Re = 37000 on coarse
and medium meshes and to compare the present results with the experiment carried out by Rapp
[32, 33], essentially for the mean velocity and turbulent stresses. Note that to this day, there is no
reference LES data for Re=37000 so that PITM results can only be compared with experimental
data. In this study, a very coarse mesh is deliberately chosen to highlight the ability of the PITM
method to simulate large scales of the flow with a sufficient accuracy for engineering computations.
The simulations are also performed on several medium meshes for assessing the effects of the
grid refinement and for studying the sharing out of the turbulent energy when the filter width is
changed. As usually made, a mean pressure gradient term is included in the momentum equations
for balancing the viscous friction at the walls and thus forcing the flow. However this forcing is
adjusted in time, at each instant, to reach the desired Reynolds number value. So, globally, the
numerical method supposes the flow Reynolds number to be chosen at a given value. The statistics
of the fluctuating velocity correlations are achieved both in space in the spanwise homogeneous
direction and in time using a relaxation relation.
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5.4 Boundary conditions

Different boundary conditions are applied on the limits of the computational domain shown in figure
1. The simulated domain is periodic in the streamwise and spanwise directions. The streamwise
periodic condition removes the need to specify the inflow and outflow conditions allowing the
assessment of the subfilter stress model without any contamination and potential sources of errors
in inlet or outlet. No-slip and impermeability boundary conditions are used at the lower and upper
walls. The wall sublayers are fully calculated at low Reynolds number without any empirical law
of the wall.

5.5 Computational grids

In a previous investigation conducted by Fröhlich et al. [30] for the flow simulated at the lower
Reynolds number Re = 10595, the dimension in the spanwise direction of the computational
domain was set to D3 = 4.5h. In a first attempt, this dimension is also retained for performing
the PITM simulations at Re = 37000. These simulations used a very coarse curvilinear grid of
80× 30× 100 points (PITM1) ≈ 1/4 million grid points, coarse grids 160× 30× 100 (PITM2) and
80×60×100 points (PITM3) ≈ 1/2 million grid points, and a medium grid of 160×60×100 points
(PITM4) ≈ 1 million grid points respectively in the streamwise, spanwise and normal directions
(x1, x2, x3). As mentioned earlier, the aim is to appreciably reduce the computational cost while
reaching acceptable accuracy for applications by using improved modeling. Figure 1 shows the
cross-section of the very coarse grid. The grid has been refined in the lower and upper wall regions
for accurately computing the boundary layers whereas it get coarser in the center of the channel. As
the region beyond the hill constitutes a key region, the grids in the streamwise direction are more
refined beyond the hill crest than in the mid-distance of the channel in order to fairly well reproduce
the flow separation caused by the hill geometry, and to properly describe the flow recirculation as
well as the reattachment of the boundary layer. Figure 2 displays the dimensionless grid spacings
in wall unit ∆+ = ∆uτ/ν in the streamwise, spanwise and normal directions where uτ =

√
τw/ρ

denotes the shear stress velocity along the lower wall for the PITM1 simulation performed on
the very coarse grid. One can see that the computed dimensionless distances ∆+

1 and ∆+
2 vary

along the lower wall with respect to the streamwise distance, showing a decrease beyond the first
hill crest followed by an increase in the windward slope of the second hill crest. From this figure
2, one can see that these two dimensionless distances in the streamwise and spanwise directions
largely exceed the minimal limit recommendations for wall-resolved LES given by Piomelli and
Chasnov [53]. The dimensionless distance ∆+

3 in the normal direction to the lower wall varies
between 0 and 4 along the streamwise direction except in the windward region of the hill where
it reaches higher values because of the increasing friction velocity. These values appear to high
to properly describe the boundary layer but this requirement is not crucial here. The results
discussed in the next section will show that the PITM simulations allows to obtain satisfactory
results without requiring extremely large memory and computing time resources in comparison
with those necessary for performing highly resolved academic LES. The fact is that the loss in
resolution has to be compensated by improved modeling features. In the PITM approach, the
modeled part of the energy spectrum is far more extended than in conventional LES and more
advanced models are necessary, giving a renewal of interest for advanced RANS type formalism.
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Figure 2. Dimensionless grid spacings in wall units ∆+ = ∆uτ/ν where uτ is the friction velocity.
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PITM1 simulation (80× 30× 100). Re = 37000

In the following, the mean flow is obtained by averaging the instantaneous flow in the different
planes in the spanwise direction where a periodic condition is applied and in time corresponding
to roughly six convective time scale T = D1/Ub where Ub is the bulk velocity.

6 Numerical results

6.1 Large flow structures

With the aim to get qualitative insights into the turbulent flow structures that develops inside the
channel with periodic hills, large eddies have been depicted using the well known Q criterion [54].
The value of the parameter Q = 1

2(ΩijΩij − SijSij) is defined as the balance between the local
rotation rate Ω and the strain rate S of the instantaneous velocity, in order to identify packets of
flow vortices. As a result, figure 3 (a), (b) shows the Q isosurfaces of the flows performed on the
coarse and the medium grids, 80 × 30 × 100 and 160 × 60 × 100, respectively. This figure reveals
the presence of very large longitudinal roll cells that develop in the entire channel and clearly
demonstrates the three dimensional nature of the flow. Due to the flow recirculation, a strong
turbulence activity is visible near the lower wall and particularly concentrated in the leeward
region of the second hill. As expected, the PITM4 simulation performed on the medium grid
160× 60× 100 captures more resolved scales than the PITM1 simulation leading to the emergence
of smaller turbulent roll cells. In that sense, it is clear that a more realistic description of the
flow requires a very refined mesh in streamwise, spanwise and normal directions to get the right
definition of the structures but as it can be observed from figure 3, it is however remarkable that
despite the coarse grid resolution, the PITM simulations still succeeds in qualitatively reproducing
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(a)

(b)

Figure 3. Vortical activity illustrated by the Q isosurfaces at Re = 37000.
(a) PITM1 simulation (80× 30× 100) Q = 2 105s−2. (b) PITM4 simulation (160× 60× 100)
Q = 4 105s−2.
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these dynamic structures. Note that the full statistical RSM computation can only provide mean
organized structures and not at all roll cell structures because of the RANS physical foundations.
This is true for all RANS models and proper URANS models (which must calculate Reynolds
averaged quantities even if unsteady in the mean).

6.2 Streamlines of the flow field

The purpose of this section is to access more practical details of the flow through the study of the
streamlines of the flow field with a particular interest focused on the recirculation zone. Figure 4
shows the streamlines plot generated in two dimensions obtained by averaging the PITM velocities
both in the homogeneous planes in the spanwise direction and in time as well as the statistical
RSM streamlines. The flow separation is caused by the adverse pressure gradient which results
from the strong streamwise curvature of the lower wall. For all simulations, the location of the
points of separation and reattachment are indicated in Table 1, including also the experimental
result given by Rapp and Manhart [33]. Relatively to the experimental data, it appears that the
PITM1 and PITM2 simulations predict a too large recirculation zone whereas the PITM3 and
PITM4 simulations return a better estimate. More precisely, the PITM3 and PITM4 simulations
provide separation and reattachment points that agree very well with the experimental data while
the PITM1 and PITM2 simulations slightly overpredict both the separation and reattachment
points. The reason of this noticeable difference in the recirculation zone between these four simu-
lations and in particular in the misprediction of the reattachment point may remain questionable
at a first glance. But as a result when comparing the mesh resolutions between these simulations,
and particularly the results associated with the PITM2 and PITM3 simulations, there is no doubt
that the grid resolution in the spanwise direction is the clue to understand this outcome. Indeed,
it appears that the PITM1 behaves likes the PITM2 simulation whereas the PITM3 behaves like
the PITM4 simulation. Both the PITM3 and PITM4 simulations are performed on meshes with
the same resolution in the spanwise dimension. The spanwise resolution is indeed well identified in
LES to play an important role in the vortex-streaks mechanism of wall turbulence and therefore
in the determination of the flow structure. It is also significant to address the spatial extent of
the recirculation bubble itself, determined as the regions in which the mean velocity profile con-
tains negative longitudinal component of velocity. The upstream and downstream values denoted
(x1/h)b1 and (x1/h)b2 respectively are included in Table 1 together with the bubble length. Note
that the streamwise locations denoted (x1/h)sep and (x1/h)reat correspond to the usual separation
and reattachment points in which the friction factor vanishes while the locations (x1/h)b1 and
(x1/h)b2 denote the upstream and downstream limit positions of the main central recirculation
bubble for which no inflection point appear in the streamline contour. These limits are defined by
the location of the vertical tangent in the front and in the rear of the bubble. From this bubble
length, it appears then that the grid simulations PITM1 and PITM2 behaves more or less like the
RSM numerical modeling while the other grid simulations PITM3 and PITM4 shows improvement.
This result is both expected and surprising ! First at all, it is expected because the modeled part in
the PITM1 simulation is larger than in the PITM4 simulation and so the inheritance from the RSM
is also larger. So, if the use of stress transport equations as a subfilter model is indeed beneficial
when the filter cutoff is located before the inertial spectral zone, some loss of accuracy happens
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Figure 4. Streamlines of the average flowfield at Re = 37000. (a) PITM1 (80× 30× 100). (b) PITM2
(160× 30× 100). (c) PITM3 (80× 60× 100). (d) PITM4 (160× 60× 100). (e) RSM (80× 30× 100).
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Figure 5: Friction coefficient Cf = τw/(0.5ρU
2
b ) along the lower wall at Re = 37000. PITM1 (80× 30×

100) · · · ; PITM2 (160 × 30 × 100) − − −; PITM3 (80 × 60 × 100) .-.-.; PITM4 (160 × 60 × 100) —;
RSM computation — (80× 30× 100).

when the simulation runs too close to statistical modeling. The grids of the mesh may appear too
coarse to accurately capture the three-dimensional effects. But this result is surprising because
the meshes associated with the PITM2 and PITM3 simulation contain both the same number of
grid points (1/4 million) and that the modeled energy between these two simulations is roughly of
the same order. This last point will be studied in figure 12. So that the only change between the
PITM2 and PITM3 simulation lies in the spanwise resolution which is different. Regarding the
RANS modeling, it is found that the recirculation zone is strongly under-predicted in comparison
with those measured from the experiment, mainly because the separation is delayed. The modeling
of the low Reynolds number wall layer is probably involved in this finding. Note that the authors
have checked the grid independance solution for the RANS computation which is not presented
here for the sake of simplicity of presentation. As for the flow computed at the lower Reynolds
number Re = 10595 [7], this RSM misprediction is likely to be due to the RANS modeling itself
that relies on statistical means equivalent to a long-time averaging. Because of this assumption,
this method is not able to capture the effect of instantaneous eddies issued from the streamwise
curvature of the lower wall. The occurrence of separation is noticeably delayed downstream. The
comparisons in the separated zone length and the recirculation bubble length made in this section
between predicted values from the simulations and the measured ones deserve interest in order
to get an appraisal of the PITM potential. However, on the physical point of view, it can be
noted that some uncertainty remains and that no definite conclusion can be drawn from these
comparisons. Indeed, if one refers to the flow computed in the same geometry but at the lower
Reynolds number Re = 10595, the highly resolved LES performed by Breuer et al. [31] on a very
refined mesh (13.1 106 grid points) which constitutes the reference simulation for this benchmark
has returned a reattachment point at x1/h = 4.694 whereas the experiment conducted by Rapp
and Manhart [33] using PIV measurements has lead to the value 4.21. The origin of the slight
discrepancies between these two values is not clear and raises some still open questions.
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Experiment Grid (x1/h)sep (x1/h)reat Separated (x1/h)b1 (x1/h)b2 Recirculation
/Simulation points length bubble length

Exp [33] 0.05 3.76 3.71
RSM 2.5 105 0.50 4.00 2.15 0.70 3.70 3.00

PITM1 2.5 105 0.19 4.30 4.11 0.50 4.20 3.70
PITM2 5.0 105 0.24 4.26 4.02 0.40 4.20 3.80
PITM3 5.0 105 0.29 3.54 3.25 0.40 3.00 2.60
PITM4 106 0.05 3.68 3.63 0.40 2.80 2.40

Table 1: Simulations of flow over periodic hills at Re = 37000 including separation, reattachment
locations and bubble length.

6.3 Friction coefficient

Figure 5 displays the distribution of the friction coefficient Cf = τw/(0.5ρU
2
b ) along the lower wall

for all PITM simulations together with the statistical computation. This information complements
the analysis made in the previous section by showing another indicator for separation reattachment
phenomena. Some deviations between these different curves are particularly observed in the leeward
region of the upstream hill. As a result of interest, one can see that all PITM simulations performed
on the coarse and medium meshes yield similar evolutions with a rather good location of the
detachment and reattachment points for the PITM3 and PITM4 simulations while the PITM1
and PITM2 simulations show some delay in the location of reattachment point. For all PITM
simulations, the friction coefficient decreases rapidly in the windward region of the first hill reaching
a first minimum value at x1/h ≈ 0.40. From there, the friction increases again towards zero and
then undergoes small oscillations to attain a new local minimum at x1/h ≈ 2.61 that corresponds
roughly to the location of the maximum reverse flow. Afterward, the friction coefficient slowly
reincreases towards the second hill crest passing through zero at the reattachment point at x1/h ≈
4.30 and 3.68 for all simulations. Finally, it reaches its maximum value shortly before the second
hill crest at x1/h ≈ 8.56 where the flow strongly accelerates. On the other hand, it appears that the
friction coefficient associated with the RSM computation strongly deviates from the PITM3 and
PITM4 results. In particular, the separation point is delayed far downstream, leading to a too short
length-scale of the separated zone. Moreover, the friction coefficient is highly over-predicted when
moving from the reattachment point to the windward region of the second hill. This study confirms
the analysis made in the preceding section suggesting that the full statistical RSM treatment is
not sufficient to accurately predict such a type of flow.

6.4 Mean velocities

Figures 6 exhibits the mean velocity profiles 〈u1〉 /Ub at six cross stations x1/h = 0.05, 0.5, 2, 4, 6
and 8 including available experimental profiles [33]. The selected positions encompass the regions
in the entrance of the channel x1/h = 0.05, just upon separation x1/h = 0.5, in the middle of the
recirculation zone close to the leeward hill face x1/h ≈ 2, prior to the reattachment x1/h = 4, the
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Figure 6. Streamwise velocity 〈u1〉 /Ub at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8). Experiment
◦ (Rapp et al., 2009) Re = 37000; PITM1 (80× 30× 100) · · · ; PITM2 (160× 30× 100) −−−;
PITM3 (80× 60× 100) .-.-.; PITM4 (160× 60× 100) —; RSM computation —(80× 30× 100).
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Figure 7. Turbulent shear stress τ13/U

2
b at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8).

Experiment ◦ (Rapp et al., 2009) Re = 37000; PITM1 (80× 30× 100) · · · ; PITM4 (160× 60× 100)
—; RSM - - -
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Figure 8. Streamwise turbulent energy τ11/U

2
b at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8).

Experiment ◦ (Rapp et al., 2009) Re = 37000; PITM1 (80× 30× 100) · · · ; PITM4 (160× 60× 100)
—; RSM - -

post-reattachment and flow recovery x1/h = 6, and finally, the region of accelerating flow on the
windward slope of the hill x1/h = 8. At the position x1/h = 0.05, the streamwise velocity features
a near-wall peak due to the preceding flow acceleration along the windward of the hill which is more
and more pronounced as the Reynolds number Re increases [33]. Recent studies suggest that this
overshoot in the velocity should be attributed to inviscid effects [33, 48] rather than to turbulent
effects. At the position x1/h = 2, the velocity near the wall is negative showing that the boundary
layer is detached (except for the RANS-RSM calculation). The maximum reverse flow occurs in
this region. In the post reattachment region after x1/h = 4, the flow consists of the boundary layer
which develops from the reattachment point and the wake originates from the separated shear layer
further upstream. At the position x1/h = 8, the flow is strongly accelerated due to the presence
of the second hill. One can see that the mean velocity profiles returned by the PITM4 simulation
exhibit a very good agreement with the reference data at almost each position except perhaps at
x1/h = 2. In particular, this simulation accurately captures the overshoot directly above the hill
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Figure 9. Turbulent energy in the normal direction to the walls τ33/U

2
b at different locations

(x1/h = 0.05, 0.5, 2, 4, 6, 8). Experiment ◦ (Rapp et al., 2009) Re = 37000; PITM1 (80× 30× 100)
· · · ; PITM4 (160× 60× 100) —; RSM - -

crest at x1/h = 0.05 which is very difficult to reproduce numerically [48]. The mean velocity profiles
at the sections x1/h = 4 and x1/h = 6 where the flow reattaches are remarkably well recovered
in accordance with the experimental data. Only very slight discrepancies are observed in the
immediate vicinity of the upper wall. Overall, the mean velocity profiles predicted by the PITM1
and PITM2 simulations performed on the coarse and medium grids show not too bad agreement
with the reference data, although some discrepancies are clearly visible at almost each section and
particularly at x1/h = 0.05, 4 and 6. It appears that these first two simulations PITM1 and PITM2
are not really able to capture the overshoot that occurs in the boundary layer of the lower wall at
x1/h = 0.05. As it was seen, both the PITM3 and PITM4 simulations provide much better results
than the PITM1 and PITM2 simulations because of the mesh refinement in the spanwise direction.
The question is then to confirm the influence of the streamwise and spanwise grid resolution,
respectively, on the solution. The answer to the above question is given by mean velocity profiles
associated with the PITM2 and PITM3 simulations. The mean velocity profiles returned by the
PITM3 and PITM4 are sensibly the same and agree very well with the experimental data in almost
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all the sections, even if some slight differences are however visible at the locations x1/h = 2 and
x1/h = 8 for instance. In particular, the flow region in the lower wall is perfectly well reproduced in
agreement with the data although the meshes associated with the PITM3 and PITM4 simulation
are of coarse resolution (1/2 and 1 million grid points) in comparison with the those required for
performing highly resolved LES (at least 3.8 millions grid-points as indicated in reference [48]).
Figure 6 also confirms that the PITM1 and PITM2 simulations yield both similar mean profiles
despite the mesh is more refined in the longitudinal direction for the PITM2 (160 grids points
instead of 80 grid points). If the PITM1 and PITM2 simulations do return acceptable velocity
profiles from a practical engineering point of view, while the PITM3 and PITM4 provide very good
ones, on the other hand, the RSM computation yields several weaknesses in the predicted results
on several aspects that show evident discrepancies with the reference data. Firstly, the flatness of
the mean velocity due to the turbulence effects is not well reproduced. Secondly, the boundary
layer on the lower wall is mispredicted in most stations of the channel and particularly at x1/h = 6.
As it was observed in the preceding sections, the flow computed by the RSM reattaches too early
at the lower wall at the station x1/h = 3.60 indicating that the RSM model does not succeed in
reproducing satisfactorily the recovery process. At this location x1/h = 3.60, the boundary layer
thickness is underpredicted by the RSM model. The origin of the observed discrepancies with the
experimental data is not clear unless to point out that this type of flow is essentially governed
by unsteady mechanisms of separation and reattachment of the boundary layer in which very
large three-dimensional eddying motions are very important. These cannot be correctly mimicked
by fully statistical RANS models, even if using sophisticated models like advanced second-moment
closures. Finally, relatively to the flow previously studied at Re = 10595 [7, 40], it appears that the
RSM prediction deteriorates as the Reynolds number Re increases from 10595 to 37000 confirming
that high Reynolds number effects are very difficult to reproduce numerically.

6.5 Turbulent stresses

The authors have checked that the PITM2 behaves like PITM1, and that the PITM3 behaves like
PITM4, and that the mean velocity and turbulent profiles returned by PITM1, PITM2, on the
one hand, and PITM3, PITM4, on the other hand, are almost the same. So that, to alleviate
the presentation of the following figures, only the profiles associated with the the PITM1, PITM4
simulations and RSM computation which substantially differ from each other are discussed in this
section. The total stresses τij are obtained as the sum of the mean subfilter and resolved parts
as indicated in equation (8). Figure 7 shows the turbulent shear stress τ13/U

2
b profiles at different

positions of the channel. Overall, one can see that the shear stress profiles returned by both
PITM simulations present a quantitative good agreement with the reference data. Relatively to
the PITM1 profiles, the PITM4 profiles are marked by a turbulent peak occurring at x1/h = 0.05
and especially at x1/h = 0.5, peak which is not measured by the experimental device. Globally, the
agreement between the PITM profiles and the experimental data is very encouraging considering
simulations performed on such coarse grids. If these results show a remarkably good degree of
agreement, it appears on the contrary that the shear stress returned by the statistical RSM model
highly deviate from the reference data in most positions of the channel. The shear stress is over-
predicted in the windward regions of the hill crest at the stations x1/h = 0.05 and 8, and under-
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Figure 10: Cutoff wave number versus the normal direction to the wall at the location x1/h = 4. PITM1
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predicted in the stations in the leeward regions at x1/h = 2 and 4 but surprisingly, almost agrees
with the experimental data in the stations x1/h = 0.5 and 6. Figures 8 and 9 display the profiles
of the streamwise and vertical turbulent normal stresses τ11/U

2
b and and τ33/U

2
b , respectively, at

the same successive locations. A first sight to the figure plots reveals that the turbulent stresses
returned by the PITM simulations agree fairly well with the experimental profiles for almost all
positions even if some slight discrepancies with the data still remain for the PITM1 simulation.
The agreement with the data for the PITM4 stress profiles is even more satisfying. As for the
turbulent shear stress, the normal stresses predicted by the PITM4 simulation present a turbulent
peak in the boundary layer of the lower wall at the stations x1/h = 0.05 and x1/h = 0.5. In the
present case, some of these peaks have been actually measured by the experiment. For instance,
the one occurring at the station x1/h = 0.5 for the normal stress τ11 is particularly visible and well
recovered by the PITM4 simulation. But surprisingly, there is no measured important turbulent
peak at the same station x1/h = 0.5 for the stress τ22 while the PITM4 simulation has predicted
one. On the contrary to PITM simulations, the turbulent stresses returned by the statistical
RSM computation show several disagreements with the experimental data even in the shape of the
individual profiles.

6.6 Sharing out of the turbulent energy

Figure 10 describes the evolution of the cutoff wave number versus the normal direction to the
wall at the location x1/h = 4 for all PITM simulations. The cutoff wave number κc = π/∆ is
computed using the grid filter defined in equation (11) where ∆a and ∆b have been considered to
handle anisotropic grids. As a result, all PITM curves present the same evolution but only differ
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in regard with the numerical value which is higher for PITM4, lower for PITM1 and almost the
same for PITM2 and PITM3. Because of the grid refinement, the cutoff wave number reaches its
highest values near the walls and its lower values in the center of the channel. Figure 11 depicts the
contours of the ratio of the subfilter viscosity to the molecular viscosity µsfs/µ = cµρk

2
sfs/(µε) in

the channel for all PITM simulations. One can see that the ratio of viscosities µsfs/µ is of relatively
high values for the PITM1 simulation performed on the very coarse mesh, roughly of the same
values for the PITM2 and PITM3 simulations but lower than for the PITM1, while of low values
for the PITM4. Moreover, the distribution of energy levels appears more pronounced in the near
lower wall region than in the center of the channel according to previous studies [7]. In particular,
the level of the viscosity ratio µsfs/µ is higher in the leeward region of the second hill after the flow
reattachment than in the windward region of the first hill before the flow detachment. Note that
the color panel levels are the main elements to learn from these plots because the detailed field
visualized here is instantaneous. Figure 12 gives the values of the ratio of the subfilter energy to
the total energy 〈ksfs〉 /k for all simulations, PITM1, PITM2, PITM3 and PITM4 at the locations
x1/h = 0.05, 0,5, 2, 4, 6, and 8. As expected, it appears that the sharing out of the turbulence
energy is governed by the filter size (in practice the mesh spacing) in relation with the turbulence
length-scale. All of these quantities appear in the definition of the parameter η introduced in the
section describing the general PITM formalism. This is merely a consequence of the particular
choice of the meshes. This result comes from the fact that the core flow is strongly characterized by
the turbulent large scales whereas the wall region is dominated by smaller scales and at the same
time the grid-size is smaller in the wall region than in the center of the channel but in a different
ratio than the turbulence macroscales. In the PITM concept, the ratio of the modeled energy to
the total energy 〈ksfs〉 /k continuously varies between the two extreme limits, zero and unity. As
a result of interest, one can see that the level of the modeled energy associated with the PITM2
simulation performed on the coarse mesh 80× 60× 100 is roughly the same as the one associated
with the PITM3 simulation 160 × 30 × 100 although the mean flow and turbulence highly differ
from one simulation to the other one. This important outcome suggests that it is not only the
ratio of the modeled energy to the total energy, as identified as a the key parameter in PITM, that
governs the simulation evolving itself between the RANS and LES regimes but also the particular
choice of the mesh refinement either in the streamwise direction or in spanwise direction. For each
location, one can see that the subfilter turbulent energy is of higher intensity near the upper wall
region than in the lower wall region confirming that the PITM behaves more like LES in the lower
wall region where the flow is dominated by large scales. Moreover, we have checked that in the
recirculation zone, the turbulence length-scale is relatively high so that the reference equilibrium
ratio 〈ksfs〉 /k defined in references [5, 6] becomes lower. Consequently, the model behaves more
like LES. Nevertheless, the grid remains adequate because of the larger turbulence length-scale.
The differences observed between the lower and higher regions in the evolution of 〈ksfs〉 /k results
from a stronger spectral non-equilibrium turbulence in the lower wall region. In the present case,
the refinement in the spanwise direction allows the PITM3 to mimic the acting mechanisms in the
turbulent flow that develop because of the three dimensional component, leading to a better flow
prediction than the PITM2 simulation which is performed on the mesh including only a refinement
in the streamwise direction. Figure 13 displays separately the subfiter and resolved parts of the
turbulent shear stress at six locations of the channel for both PITM1 and PITM4 simulations.

28



(a)

(b)

(c)

(d)

Figure 11 Contours of the ratio of the subfilter viscosity to the molecular viscosity µsfs/µ. (a) PITM1
(80× 30× 100). (b) PITM2 (160× 30× 100). (c) PITM3 (80× 60× 100). (d) PITM4 (160× 60× 100).
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Figure 12. Ratio of the subfilter energy to the total energy 〈ksfs〉 /k at different locations
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Figure 13. Turbulent shear stress τ13/U
2
b at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8).

Experiment ◦ (Rapp et al., 2009) Re = 37000; PITM1 (80× 30× 100), (τ13)sgs: −.− .− .; (τ13)les: · · · .
PITM4 (160× 60× 100), (τ13)sgs: - - -; (τ13)les: —.
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For the PITM4, one can see that the subfilter part reduces to zero apart from small subfilter
contributions near the wall regions while for the PITM1, both contributions, modeled and resolved
parts, are appreciable even if the subfilter part is lower than the the resolved one.

6.7 Flow anisotropy

Figure 14, 15 and 16 describe the solution trajectories along vertical lines starting from the lower
wall towards the upper wall at different streamwise locations, that are projected onto the second and
third invariants plane formed from the subfilter, resolved and total anisotropy tensors, respectively.
In this framework, Lumley [34] has indicated that the possible states of turbulence must remain
inside a curvilinear triangle delimited by the straight line of the two-dimensional state satisfying
equation A3 − A2 + 8/9 = 0 and by two limiting curves of axisymmetric states of equations

|A2| = 61/3A
2/3
3 . For isotropic flows, we recall that the flatness parameter A goes to unity since

the invariants A2 and A3 are zero whereas near the walls, A is close to zero because of the two
component limit turbulence states. Each diagram of these figures at the stations x1/h = 0.05,
0.5, 2, 4, 6 and 8 shows that the solution trajectories do remain inside the curvilinear triangle
of realizability, confirming that the realizability conditions associated with the subfilter, resolved
and total or Reynolds stresses [55] are well satisfied. For the subfilter scale stresses, this result
was expected since it has been demonstrated in reference [23] that the present subfilter scale stress
model satisfies the weak form of the realizability conditions from a physical standpoint [42]. In
that sense, the solutions trajectories plotted in each diagram of figure 14 allow to verify this
point in some particular cross sections of the channel. The fact that these conditions are also
satisfied for the resolved and total stress tensors simply means that the turbulent energy initially
splitted into modeled and resolved parts can be fairly well reconstructed as a whole from each
different contributions of energy according to the physics of turbulence. Let us now analyze the
solutions trajectories in the realizability triangle projected onto the plane formed by the second
and third invariants of the subfilter scale anisotropy (aij)sfs = [〈(τij)sfs〉 − 2

3 〈ksfs〉 δij ]/ 〈ksfs〉.
From figure 14, one can see that the trajectories start from the straight line of two-component
limit corresponding to the lower or the upper wall regions and these curves reach a more isotropic
state near the origin of the diagram associated with the centered region of the channel. As a result
of interest, it appears that the flow anisotropy resulting from the subfilter part of the turbulent
energy observed all along its trajectory is more pronounced near the upper wall than near the lower
wall. This outcome is not surprising since the lower boundary layer is modified by the wake of the
flow which has separated from the first hill. The solutions trajectories computed from the resolved
anisotropy tensor (aij)les = [〈(τij)les〉 − 2

3 〈kles〉 δij ]/ 〈kles〉 are represented on Figure 15. As for the
subfilter anisotropies viewed in figure 14, one can remark that the resolved anisotropies trajectories
computed from the resolved scales still lie within the curvilinear triangle implying also that the
constraints of realizability are satisfied. But the solution trajectories differ from one diagram to
another one, suggesting that the flow anisotropy strongly varies in space when moving from the
windward region of the first hill at x1/h = 0.05 to the leeward region of the second hill at x1/h = 8.
In the sections located at x1/h = 4 and x1/h = 6, the anisotropy is more pronounced than in the
other sections. Figure 15 indicates also that the resolved anisotropy tensor is of lower intensity
in the recirculation zone at x1/h ≈ 2 than in the reattachment zone at x1/h ≈ 4 where the wall
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Figure 14. Solutions trajectories along vertical lines at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8)

projected onto the second-invariant/third-invariant plane formed by the subfilter scale anisotropy
tensor (aij)sfs = [〈(τij)sfs〉 − 2

3
〈ksfs〉 δij]/ 〈ksfs〉 • lower wall; N upper wall. PITM1 (80× 30× 100)

33



−1 0 1 2

A
3

0

1

2

3

A
2

−1 0 1 2

A
3

0

1

2

3

A
2

(a) x1/h = 0.05 (b) x1/h = 0.5

−1 0 1 2

A
3

0

1

2

3

A
2

−1 0 1 2

A
3

0

1

2

3

A
2

(c) x1/h = 2 (d) x1/h = 4

−1 0 1 2

A
3

0

1

2

3

A
2

−1 0 1 2

A
3

0

1

2

3

A
2

(e) x1/h = 6 (f) x1/h = 8
Figure 15. Solutions trajectories along vertical lines at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8)

projected onto the second-invariant/third-invariant plane formed by the resolved scale anisotropy
tensor (aij)les = [〈(τij)les〉 − 2

3
〈kles〉 δij]/ 〈kles〉 • lower wall; N upper wall. PITM1 (80× 30× 100)
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Figure 16. Solutions trajectories along vertical lines at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8)

projected onto the second-invariant/third-invariant plane formed by the anisotropy tensor
aij = (τij − 2
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kδij)/k. • lower wall; N upper wall. PITM1 (80× 30× 100)
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effects are more pronounced. The solution trajectories computed from the total anisotropy tensor
aij = (τij − 2

3kδij)/k are then shown in figure 16. These trajectories can be compared with those
computed by Frohlich et al. [30] when performing highly resolved LES, the subfilter part in their
case being neglected in comparison with the resolved one. As a result, one can see that the present
trajectories compare very well with those plotted in figure 16 of reference [30] at the cross sections
x1/h = 0.50, 2, 6 and 8 although some minor differences can be however observed in the immediate
vicinity of the walls, as for instance for the trajectories computed at x1/h = 6. As a consequence,
this section demonstrates in some particular cases that the PITM simulation is able to reproduce
the flow anisotropy in the whole channel as well as to satisfy the realizability conditions [55].

6.8 Energy spectrum densities

An example of the time evolution of the instantaneous velocity components u<1 , u<2 and u<3 is given
in figure 17. This plot displays the time signal recorded during the time interval corresponding
to roughly six convective time scale T = D1/Ub taken in the center of the recirculation zone
at the point of coordinates x1/h = 2, x3/h = 0.5 located in the mid-plane x2/h = 2.25 in the
spanwise direction. In this flow recirculation zone, note that the mean velocity is close to zero
〈u1〉 ≈ 〈u2〉 ≈ 〈u3〉 ≈ 0. At a first sight, it can be seen that the recorded signal presents very
low frequencies undulations of the order of ν = 1/0.01 ≈ 100 Hz, or in dimensionless frequency
normalized by the bulk velocity Ub and the channel height h, ν∗ = νh/Ub ≈ 0.13, that are similar
to those observed in figure 18 of reference [30] but at the lower Reynolds number Re = 10595. This
frequency corresponds to the return time of the turbulent large eddies and its order of magnitude is
roughly the same as the characteristic frequency obtained assuming a frozen turbulence convected
in the center of the plane channel. In regard with this figure, the present signal appears smoothed
because of the filtering produced by the coarse grids used for performing these PITM simulations.
Indeed, the more the grids are coarse, the more the fine grained turbulence is weak and smoothed
out, the mesh acting like a low-pass filter reducing the high frequencies. A more detailed analysis
of the signal is worked out by computing the energy spectrum densities of one dimensional spectra
of the three velocity components. As usually made in signal processing, the one dimensional time
spectrum is obtained by taking the windowed fast Fourier transform (FFT) with a Hann window
H(t) [56] of the fluctuating velocity correlation tensor as follows

Eii(ν) = FFT [
〈
u<i (t)u<i (t+ τ)

〉
H(t)] (34)

for i = 1, 2, 3 (no summation). The three spectra E11, E22 and E33 are presented in figure 18
versus the dimensionless frequency ν∗ = νh/Ub. To improve the accuracy of the data without
any dispersion of the spectrum results, the signals are recorded at 11 different spanwise locations
at each temporal iteration δt over which the statistical treatment is performed. The time energy
spectra densities shown in figure 18 refer to the center of the flow recirculation zone. As a
result, the energy spectrum E11 associated with the streamwise velocity component u1 appears
of higher intensity than the other ones E22 and E33 at very low frequencies. One can observe
that the spectra E11, E22 and E33 present the same regular decay for at least two decades of low
frequencies that agree very well with the slope decay −5/3 of the Kolmogorov law corresponding
to the inertial zone of the spectrum. This outcomes means that the flow in the recirculation zone is
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Figure 18: Energy spectrum density of one-dimensional spectra of the three velocity components com-
puted in the center of the recirculation zone at x1/h = 2, x3/h = 0.5. E11: —; E22: - - -; E33: −. − .;
ν−5/3: —; PITM1 simulation (100× 30× 100) performed at Re = 37000.
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close to spectral equilibrium and behaves more or less like locally isotropic turbulence. Afterward,
as the frequencies increase, the spectra are characterized by a rapid drop of energy because of the
subfilter scale model and of the viscous dissipation process acting in the flow itself. Figure 18
compares very well with figure 17(a) of reference [30] showing the energy spectra density although
the spectra are computed at the lower Reynolds number Re = 10595. The two set of curves follow
similar trends. But the length of the inertial zone should be shorter for the PITM simulations
because the physical processes associated with the high frequencies are modeled and consequently
not resolved as it is for highly resolved LES.

6.9 Two-point velocity correlation functions

Figure 19 shows an example of the evolutions of two-point correlation functions of the large scale
fluctuating of the resolved velocities defined here by

Rii(x1, x2, x3) =
〈u<i (x1, x2, x3)u<i (x1, x2 + r2, x3)〉√〈
u<2
i (x1, x2, x3)

〉√〈
u<2
i (x1, x2 + r2, x3)

〉 (35)

for i = 1, 2, 3 (no summation), R11, R22 and R33, versus the spanwise distance x2 where r2 ranges
from 0 to D2/2. The correlation tensor appearing in the numerator is computed using equation
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Figure 19: Spanwise two-point correlation function computed at x1/h = 6 and x3/h = 1.1. R11: ◦; R22:
�; R33: M; PITM4 simulation (160× 60× 100) performed at Re = 37000.

(10) applied in the case of two different point locations. The correlation is plotted at the streamwise
station x1/h = 6.0 at the distance from the wall x3/h = 1.1 allowing a comparison with the curves
given on figure 25(d) of reference [30] corresponding to highly resolved LES at the lower Reynolds
number Re = 10595. Even if the Reynolds number is different, the present calculated evolutions
of the two-point correlation functions present qualitative agreements with the data of Fröhlich et
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al. [30]. But as already observed in reference [30], it appears from figure 19 that the spanwise
dimension of the channel is too short because the streamwise tensor correlation R11 doesn’t return
to zero at the mid position of the channel. As the Reynolds number increases from 10590 to 37000,
this effect seems more aggravated since R11 reaches lower values close to -0.25. Regarding the two-
point correlation profiles, the slow decay of the curves associated with R22 and R33 in that region
suggests the presence of elongated eddies in the spanwise direction. This outcome is moreover
confirmed by figure 3 showing the longitudinal roll cells in the leeward region of the second hill.
Once more, the PITM simulation has provided realistic information on the two-point correlation
functions although being performed on coarse meshes.

7 Conclusion

A subfilter stress model derived from the PITM method has been applied to simulate the separated
flow in a channel with streamwise periodic constrictions at high Reynolds number. In comparison
to highly resolved LES requiring refined meshes, the present simulations have been performed on
several meshes including a very coarse mesh, two coarse meshes and a medium mesh. As a result, it
has been found that the PITM simulations performed on the meshes 80×60×100 points (PITM3)
≈ 1/2 million grid points, and 160× 60× 100 (PITM4) ≈ 1 million grid points, respectively in the
streamwise, spanwise and normal directions (x1, x2, x3) reproduce fairly well this flow with complex
physics involving turbulence mechanisms associated with separation, recirculation, reattachment,
acceleration and wall effects. In particular, the mean velocity profiles are in very good agreement
with the experimental data although the meshes are coarse, the degree of the mesh refinement used
for performing PITM simulations still remaining far away from the one required to perform highly
resolved LES. These remarks are particularly true as the Reynolds number increases. In this case,
the computational time can be appreciably reduced compared to the one of an highly resolved LES.
The main outcome of this study is also to show numerically that the PITM simulations may be
damaged if using too coarse mesh resolution, especially in the spanwise direction of the flow. More
precisely, it appears that the grid in this direction can indeed be coarse as in the other grid directions
in the longitudinal and normal directions, but a sufficient resolution in the spanwise direction is
however required to allow the PITM simulation to mimic correctly the turbulent mechanisms
induced by three dimensional component. Concerning the other PITM simulations performed
on the meshes 80 × 30 × 100 points (PITM1) ≈ 1/4 million grid points, and 160 × 30 × 100
points (PITM2) ≈ 1/2 million grid points, the mean velocity and turbulent stresses are found in
acceptable agreement with the experimental profiles, some discrepancies being however observed in
the immediate vicinity of the lower wall. But we have proven that the origin of this misprediction
is essentially due to the spanwise grid resolution and not at all to the model itself. In contrast with
the PITM simulations, the statistical RSM computation, whatever the mesh considered, shows
important weaknesses in the prediction of this particular flow, mainly because in the statistical
approach, no account can be taken of the very large unsteady eddies. This conclusion pertains
however only to a particular flow and a particular stress transport closure [25].

39



A Low Reynolds number formulation of the subfilter

scale model

The present subgrid stress PITM model based on the transport equations (12) and (14) has been
used in a low Reynolds number form. The modeled expressions of each individual terms of these
equations are briefly recalled in the following, the principle of the modeling being developed in
references [7, 23]. The production term represents the source due to the interaction between the
stresses and the velocity gradients

Pij = −(τik)sfs
∂ūj
∂xk
− (τjk)sfs

∂ūi
∂xk

(36)

The redistribution term Πij is decomposed into a slow part Π1
ij , a rapid part, Π2

ij and a wall

reflection part Π3
ij . The slow term Π1

ij (Rotta term) characterizes the return to isotropy due to the
action of turbulence on itself

Π1
ij = −c1

εsfs
ksfs

(
(τij)sfs −

1

3
(τmm)sfsδij

)
, (37)

the rapid term Π2
ij (isotropization of production term) involves the velocity gradients

Π2
ij = −c2

(
Pij −

1

3
Pmm δij

)
, (38)

and the wall reflexion term Π3
ij accounts for the wall effects caused by the reflection of the pressure

fluctuations from rigid walls

Π3
ij = c1w

εsfs
ksfs

((τkl)sfsnknlδij − 3
2
(τki)sfsnknj − 3

2
(τkj)sfsnkni) fw

+ c2w

(
Π2
klnknlδij − 3

2
Π2
iknknj − 3

2
Π2
jknkni

)
fw (39)

In these expressions, c1 and c2 are some functions depending on the Reynolds number and on the
anisotropy tensor (aij)sfs = [(τij)sfs−2

3ksfsδij ]/ksfs, the subgrid-scale invariantsA2 = (aij)sfs(aji)sfs,
A3 = (aij)sfs(ajk)sfs(aki)sfs and the flatness parameter A = 1− 9

8(A2 −A3). The quantity ni is
the unit vector perpendicular to the wall and fw is a near wall damping function. The diffu-
sion terms Jij and Jε appearing in equations (12) and (14), respectively, are modeled assuming a
well-known gradient law

Jij =
∂

∂xm

(
ν
∂(τij)sfs
∂xm

+ cs
ksfs
εsfs

(τml)sfs
∂(τij)sfs
∂xl

)
(40)

and

Jε =
∂

∂xj

(
ν
∂εsfs
∂xj

+ cε
ksfs
εsfs

(τjm)sfs
∂εsfs
∂xm

)
(41)

where cs and cε are constant coefficients. Relatively to its previous value [7], the coefficient cε1
appearing in the subfilter dissipation rate equation (14) is slightly recalibrated to the value cε1 =
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Functions Expressions
Rt k2

sfs/(νεsfs)

c1

(
[1 + 2.30AA

1/8
2 [1− exp(−(Rt/140)2)]

)
α(η)

c2 0.60A1/2(1− exp(−
√
Rt))

c1w −2
3
c1 + 5

3

c2w max(2
3
c2 − 1

6
, 0)/c2

fw min(0.4k
3/2
sfs/(εsfsxn), 2.50)

α (1 + α1η
2
c )/(1 + α2η

2
c )

Table 2: Functions used in the subfilter stress model.

1.5 instead of cε1 = 1.45. The value cε1 = 1.5 also comes almost naturally in the analytical
developments performed in the spectral space [5, 6, 22], although this value is not a theoretical
requirement [29]. The functions used in the subgrid-scale model stress at low Reynolds number are
listed in table (2). These functions are inspired from the statistical Launder and Shima model [25]
when ηc goes to zero (RANS behavior) but are modified to remain consistent with the logarithmic
law of the wall in the turbulent boundary layer. Moreover, the constant coefficients appearing in
the function c1 have been optimized to 2.30 and 140 instead of 2.58 and 150 and the dependence

with respect to the second invariant is proposed as A
1/8
2 instead of A

1/4
2 in order to vary more

slowly. According to the rapid distortion theory for homogeneous strained turbulence in an initially
isotropic state [57], the function c2 has been also modified with the aim to satisfy the limiting
condition lim Rt→∞ c2(Rt) = 0.60. These new functions are also listed in table (2). The constants
values used in the diffusion terms are cs = 0.22 and cε = 0.18. The numerical coefficients used in
the function csfs1 are α1 = 1.3/400 and α2 = 1/400, βη = [2/(3CK)]9/2 is computed for CK = 1.4.
In the present calculations, the PITM subfilter model exactly reduces to the corresponding RSM
model formulation when used in statistical mode when ηc goes to zero.
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