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Abstract

We examine the effect of variable filter width in the partially integrated transport modeling
(PITM) method in the framework of second moment closure (SMC) and the commutation errors
arising from the non-commutativity of the filtering process with temporal or spatial derivatives. We
propose a method to account for this effect in PITM numerical simulations. In particular, we model
the commutation terms in a practical way to get tractable Navier-Stokes and turbulence equations.
We apply a discrete approximation to the top hat filter to compute the commutation terms for the
velocities and turbulent stresses by means of a superfilter width. A special attention is devoted to
the treatment of the turbulent stresses. Moreover, a physical interpretation of the commutation
terms is given in the spectral space involving the flux of energy transfer of the spectrum. For
illustration purpose, we perform numerical simulations of the fully developed turbulent channel
flow on several grids including a sudden grid step increase in the grid-size in the streamwise
direction that is akin to grid discontinuities. The commutation errors are then distributed in a
small delimited region of the field. As a result, we found that the impact of the commutation terms
on the PITM solution remains moderate even if the grid-size variation is increasing up to 400 %
in the streamwise direction but the accounting for the commutation errors has however a slight
beneficial effect on the solution by improving the flow prediction.

1 Introduction

Large eddy simulation (LES) which consists in modeling the more universal scales while the large
scales motions are explicitly computed is a promising tool (Lesieur and Métais, 1996) that is comple-
mentary to Reynolds averaged Navier-Stokes equations (RANS) that is still often used in industries
for predicting steady flows (Chaouat, 2006; Gatski et al., 2007; Jakirlic et Maduta, 2015). LES
has been especially developed in the past two decades for simulating unsteady flows with emphasis
on fundamental aspects including the flow structures, the statistical post analysis based on two-
point correlation and spectral properties. This method is costly in term of computational resources
for industrial applications involving turbulent flows at high Reynolds numbers, even with the in-
crease of super-computer power. This is the reason which has led researchers to develop hybrid

∗Senior Scientist, Department of Computational Fluid Dynamics. E-mail address: Bruno.Chaouat@onera.fr

1



RANS-LES methods that combine advantages of both RANS and LES methods. These methods
were referenced recently by different authors (Frölhlich and Von Terzi, 2008; Argyropoulos and
Markatos, 2015; Chaouat, 2017a). Among these hybrid RANS-LES methods, we focus interest in
the partially integrated transport modeling (PITM) method developed by Schiestel and Dejoan
(2005) using two equation subfilter scale viscosity models and by Chaouat and Schiestel (2005) for
the extension to stress transport subfilter scale models in the framework of second moment closure
(SMC) (Schiestel, 2008, Hanjalic and Launder, 2011). The modeling of the dissipation-rate by its
transport equation using spectral splitting techniques and partial integration in the spectral space
is the cornerstone of this method (Schiestel and Dejoan, 2005; Chaouat and Schiestel, 2005). This
one has been proposed for simulating non-equilibrium unsteady flows on relatively coarse grids with
seamless coupling between the RANS and LES regions considering that the cutoff wave number
can be placed everywhere in the spectrum and in particular before the inertial zone within the
energy spectrum as far as the grid-size is however sufficient to describe correctly the mean flow.
In this case, an appreciable part of subfilter energy is modeled by means of transport equations of
the turbulent field variables. Overall, the PITM method has proved to be a promising route for
various applications encountered in aeronautics and space (Chaouat and Schiestel, 2005; Befeno
and Schiestel, 2007; Chaouat, 2012; Chaouat and Schiestel, 2013; Stoellinger et al., 2015; Kenjeres
et al., 2015; Chaouat, 2017b). Generally speaking, subfilter models derived from the PITM method
vary continuously from RANS to LES with respect to a parameter formed from the ratio of the
turbulence length-scale Le to the grid-size ∆. This method was initially developed for constant
filter width or at least filter width slowly varying in time and space. However, certain applications
require to perform PITM simulations of temporally or spatially evolving turbulent flows on moving
meshes or distorted meshes. In addition, for computational strategies in complex geometries, the
grids can be suddenly coarsened or refined to optimize the resolution capacity of the grid with a
given number of points. As a consequence, numerical errors caused by the change of the grid-size
may propagate into the flow leading to the possibility of unphysical results.

In framework of LES, and more precisely, eddy viscosity models, several authors, Ghosal and
Moin (1995), van der Bos and Geurts (2004), Geurts and Holm (2006), Fureby and Tabor (1997),
investigated the effect of a varying grid-size for several types of flow and especially the commu-
tation errors arising from the non-commutativity of the filtering process with temporal or spatial
derivatives. Vasilyev et al. (1998), van der Bos and Geurts (2005) analyzed the magnitude of the
commutation terms assuming that the flow variables are sufficiently smooth to be developed in
Taylor series expansion in space. Van der Bos and Geurts (2005) validated their result using a
priori tests based on DNS data in turbulent mixing layers. More recently, in framework of hy-
brid zonal RANS-LES methods, Hamba (2011) studied the filtered Navier-Stokes equations with a
special attention paid to the interface treatment. As a result, Hamba indicated that zonal hybrid
RANS-LES simulations neglecting the commutation terms underpredict the velocity fluctuations
in the interface region leading to the velocity mismatch in channel flow.

In the present work, we will investigate the effect of a varying filter width on PITM flow
solution in continuous hybrid non-zonal RANS-LES simulations using second moment closure. As
a starting point, we will examine the equations of the subfilter scale stress model and especially the
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commutation errors arising from the non-commutativity of the filtering process with temporal or
spatial derivatives, and we will propose a method to account for this effect in numerical simulations.
Special attention will be paid to the treatment of the turbulent stresses. Then, we will give
a physical interpretation of the commutation terms in the spectral space. We will check the
consistency of the turbulence model and address the issue of realizability in second moment closure
modeling accounting for the commutation terms. For illustration purpose, we will perform then
numerical simulations of the well known fully developed turbulent channel flow on several grids
where the commutation errors are concentrated in a given field region due to a sudden grid step
increase in the grid-size in the streamwise direction. With the aim to investigate this effect without
any contamination and potential source of errors, we will develop a specific numerical tool of
generation of fully developed turbulence. We will especially examine the mean velocity profile,
the subfilter, resolved and total turbulent stresses including the sharing out of turbulent energy
between the modeled and resolved scales, and the evolution of the turbulence length-scale when
passing from uniform grids to coarse grids. The PITM simulations will be compared with the direct
numerical simulation performed at the friction Reynolds number Rτ = 395 (Moser et al., 1999).

2 Commutation terms

Turbulent flow of a viscous incompressible flow is considered. In RANS methodology, each variable
φ can be decomposed into a statistical part 〈φ〉 and a fluctuating part φ′ such as φ = 〈φ〉+ φ′

whereas in large eddy simulation, the variable φ is decomposed into a large scale (or resolved
part) φ̄ and a subfilter-scale fluctuating part φ> or modeled part such that φ = φ̄+ φ>. The
instantaneous fluctuation φ′ contains in fact the large scale fluctuating part φ< and the small scale
fluctuating part φ> such that φ′ = φ< + φ>. The filtered variable φ̄ is defined by the filtering
operation as the convolution with a filter G in space φ = G ∗ φ that leads to the computation of a
variable convolution integral

φ̄(x, t) =

∫
Ω
G [x− ξ,∆(x, t)]φ(ξ, t)dξ (1)

where in this expression, ∆ denotes the filter-width that varies in time and space and Ω denotes
the infinite flow domain. The filter function G satisfies the normalization condition∫

Ω
G [x− ξ,∆(x, t)] dξ = 1 (2)

As known, the properties of the filtering process are different from those of the statistical aver-
aging process. In particular, ¯̄φ 6= φ̄, 〈φ<〉 = −〈φ>〉 6= 0. As a result of interest, note also that〈
φ̄
〉

= 〈φ〉 − 〈φ>〉 6= 〈φ〉 so that there is no direct connection between the averaged field in a sta-
tistical sense and the filtered field in LES. But, all these difficulties disappear in an homogeneous
turbulent field. So that the instantaneous variable φ can be then rewritten very clearly as the
sum of a mean statistical part 〈φ〉, a large scale fluctuating part φ< = φ̄− 〈φ〉, and a small scale
fluctuating part φ>. In the general case, the key concept is to consider the tangent homogeneous
anisotropic turbulence field at the physical space location X within the nonhomogeneous field
(Chaouat and Schiestel, 2007; Chaouat and Schiestel, 2009) implying that the variation of the
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mean velocities uk is accounted for by the use of Taylor series expansion in space limited to the
linear terms such that 〈uk〉 (Xm + ξm) = 〈uk〉 (Xm) + Λkjξj where Λkj is a constant tensor, we
recover the interesting property establishing the link between the RANS and LES methodologies
(Chaouat and Schiestel, 2007)

〈uk〉(Xm + ξm) = 〈uk〉 (Xm) + Λkjξj = 〈uk〉 (Xm) (3)

because the convolution of Λkjξj with G reduces to zero, G being an even function. Strictly

speaking, hence, as a consequence of equation (3), we now get the property 〈φ〉 =
〈
φ̄
〉

= 〈φ〉 if we
work in the tangent homogeneous space. In general practice however, if the tangent homogeneous
space approximation is not used, one can assume that

〈
φ̄
〉
≈ 〈φ〉 only if the variation of the flow

velocities over the filter width is not too large. Due to the fact that the filtering operation does
not commute with the space derivative, a commutation term appears in the derivative in space
∂φ̄/∂xi as (Iovieno and Tordella, 2003; Chaouat and Schiestel, 2013)

∂φ̄

∂xi
(x, t) =

∂φ

∂xi
(x, t) +

∂∆

∂xi

∂φ

∂∆
(x, t) (4)

and equivalently , if transposing equation (4) in time for the derivative ∂φ̄/∂t

∂φ̄

∂t
(x, t) =

∂φ

∂t
(x, t) +

∂∆

∂t

∂φ

∂∆
(x, t) (5)

The commutation errors in space and time are defined, respectively, by

Cxi(φ) =
∂φ

∂xi
(x, t)− ∂φ̄

∂xi
(x, t) = −∂∆

∂xi

∂φ

∂∆
(x, t) (6)

Ct(φ) =
∂φ

∂t
(x, t)− ∂φ̄

∂t
(x, t) = −∂∆

∂t

∂φ

∂∆
(x, t) (7)

The issue to address first is to compute the material derivative of any variable φ of the flow

dφ

dt
=
∂φ

∂t
+
∂(ujφ)

∂xj
(8)

Applying the filtering operation on equation (8) yields

dφ

dt
=
∂φ

∂t
+
∂ (ujφ)

∂xj
(9)

Then, if using equation (4) for the derivative in space and the corresponding equation (5) for the
derivative in time, we get

dφ

dt
=
∂φ

∂t
− ∂∆

∂t

∂φ̄

∂∆
+
∂(ujφ)

∂xj
− ∂∆

∂xj

∂(ujφ)

∂∆
(10)

The correlation ujφ appearing in equation (10) can be developed in a more explicit form as

ujφ = ūjφ̄+ [ujφ− ūjφ̄] = ūjφ̄+ τ(uj , φ) (11)
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where τ(uj , φ) is a function defined as τ(uj , φ) = ujφ− ūjφ̄. So that equation (10) becomes

dφ

dt
=
∂φ̄

∂t
+
∂(ūjφ̄)

∂xj
+
∂τ(uj , φ)

∂xj
− βT (φ) (12)

where βT (φ) = βt(φ) + βxj (ujφ) with

βt(φ) =
∂∆

∂t

∂φ̄

∂∆
(13)

βxj (ujφ) =
∂∆

∂xj

∂

∂∆

(
ūjφ̄+ τ(uj , φ)

)
(14)

The transposition in space of equation (13) is

βxi(φ) =
∂∆

∂xi

∂φ̄

∂∆
(15)

As a result, equation (12) including βT will be the main functional operator that will be used as
a base throughout the following work to get the filtered Navier-Stokes and PITM equations of
turbulent flows.

3 Filtered Navier-Stokes equation

Using equation (4), the exact filtered equation of mass conservation is

∂ūj
∂xj
− βxj (uj) = 0 (16)

and considering the functional operator (12), the filtered Navier-Stokes equation for the motion
reads

∂ūi
∂t

+
∂ (ūiūj)

∂xj
− βT (ui) = −1

ρ

∂p̄

∂xi
+

1

ρ
βxi(p)−

∂τ(ui, uj)

∂xj

+ν
∂2ūi
∂xj∂xj

− ν ∂2∆

∂xj∂xj

∂ūi
∂∆
− ν ∂∆

∂xj

∂∆

∂xj

∂2ūi
∂∆2

− 2ν
∂∆

∂xj

∂2ūi
∂xj∂∆

(17)

Equation (17) is of very complex mathematical form due to the commutation terms appearing
in left and right-hand sides of equation (17). With the aim to get a more tractable equation, we
account for the commutation terms only in the material derivative considering that the other terms
act only in the near wall region and can be therefore neglected in the core flow. A deeper reason to
do that is that the main contribution of the commutation terms to the changes in turbulent energy
arises from the convective terms, as will be detailed in equation (26) of section 4. Furthermore,
these terms lead to a clear interpretation of the additional flux in the spectral space, as shown
in equation (76) of section 7 and which corresponds to an important physical effect, the energy
exchange due to the variation of the subfilter cutoff. So that equation (17) reduces to

∂ūi
∂t

+
∂(ūiūj)

∂xj
− βT (ui) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τ(ui, uj)

∂xj
(18)
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where βT is given by

βT (ui) =
∂∆

∂t

∂ūi
∂∆

+
∂∆

∂xj

∂

∂∆
(ūj ūi + τ(uj , ui)) (19)

Or equivalently,

βT (ui) =

[
∂∆

∂t
+ ūj

∂∆

∂xj

]
∂ūi
∂∆

+ ūi
∂∆

∂xj

∂ūj
∂∆

+
∂∆

∂xj

∂τ(uj , ui)

∂∆
(20)

We suppose that the commutation terms in the material derivative of equation (20) are dominant
in comparison with the other ones for simulation of turbulent flows in a practical way. In this case,
assuming also that the derivative ∂τ(ui, uj)/∂∆ can be neglected in comparison with the other
terms, we get the simpler expression

βT (ui) ≈
[
∂∆

∂t
+ ūj

∂∆

∂xj

]
∂ūi
∂∆

=
D∆

Dt

∂ūi
∂∆

(21)

Note that this commutation term included in the motion equation (18) has the effect to slightly
modify the coupling between the filtered velocity ūi and the turbulent stress field. In fact, they
are the commutation terms appearing in the transport equation of the subfilter scale stresses that
are of primary importance in PITM.

4 Exact subfilter scale stress equation

The main ingredient of the PITM method is the new dissipation-rate equation that constitutes
the cornerstone of the modeling. This equation is used in conjunction with the transport equation
of the subfilter scale turbulent energy or the subfilter scale stress (SFS) depending on the closure
level that is chosen. In a general framework, we need to establish the transport equation for the
stress tensor τ(ui, uj) = uiuj − ūiūj which is composed of two terms. To do it, we consider first
the transport equation of the tensor formed by the double velocities tij = uiuj

dtij
dt

= −1

ρ

(
uj
∂p

∂xi
+ ui

∂p

∂xj

)
+ ν

(
uj

∂2ui
∂xk∂xk

+ ui
∂2uj
∂xk∂xk

)
(22)

Once again, we apply the functional operator (12) with φ = tij for computing the filtered term
appearing in the left hand side of this equation

dtij
dt

=
∂t̄ij
∂t

+
∂

∂xk
(ūk t̄ij) +

∂τ(uk, tij)

∂xk
− βT (tij) (23)

The transport equation for the quantity ūiūj is obtained by multiplying equation (18) by ūj and
adding the transposed equation. As a result, we finally find that the transport equation for τ(ui, uj)
including the commutation terms in the convection process reads

∂τ(ui, uj)

∂t
+

∂

∂xk

(
τ(ui, uj)ūk

)
− βT (uiuj) + ūjβT (ui) + ūiβT (uj)

= −∂τ(ui, uj , uk)

∂xk
+ ν

∂2τ(ui, uj)

∂xk∂xk
− 1

ρ

∂τ(p, ui)

∂xj
− 1

ρ

∂τ(p, uj)

∂xi
+ τ (p, 2Sij)

−2ντ

(
∂ui
∂xk

,
∂uj
∂xk

)
− τ(ui, uk)

∂ūj
∂xk
− τ(uj , uk)

∂ūi
∂xk

(24)
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with the general definitions τ(f, g) = fg− f̄ ḡ and τ(f, g, h) = fgh− f̄ τ(g, h)− ḡτ(h, f)− h̄τ(f, g)−
f̄ ḡh̄ for any turbulent quantities f , g, h and where Sij denotes the tensor of the strain deformation

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(25)

The commutation terms appearing in equation (24) takes a very complex form but in practice, we
retain only the commutation terms of higher magnitude in equation (24) linked to the derivatives
∂τ(ui, uj)/∂∆ leading to the approximate equation

βT (uiuj)− ūjβT (ui)− ūiβT (uj) ≈
D∆

Dt

∂τ(ui, uj)

∂∆
(26)

5 Modeled PITM equations

The subfilter scale stress transport equation is obtained from the modeling of the exact equation
(24). For the sake of clarity, we denote the subfilter scale stress as (τij)sfs = τ(ui, uj) and the
subfilter scale energy as ksfs = τ(ui, ui)/2. This transport equation for (τij)sfs can be written in
the compact form as

∂(τij)sfs
∂t

+
∂

∂xk

(
(τij)sfsūk

)
= Pij + Πij −

2

3
δijεsfs + Jij (27)

where Pij , Πij and Jij denote the production, redistribution and diffusion terms and εsfs is the
subfilter-scale dissipation rate. The production term Pij is composed by the production P 1

ij due to
the interaction between the subfilter-scale stress and the filtered velocity gradient

P 1
ij = −(τik)sfs

∂ūj
∂xk
− (τjk)sfs

∂ūi
∂xk

(28)

and by the commutation term P 2
ij caused by the commutation term defined by equation (26)

involving the derivative of the filter width

P 2
ij =

D∆

Dt

∂(τij)sfs
∂∆

(29)

The redistribution term Πij is modeled into a slow part Π1
ij which characterizes the return to

isotropy due to the action of turbulence on itself and a rapid part Π2
ij which describes the return

to isotropy by action of the filtered velocity gradient as

Π1
ij = −c1

εsfs
ksfs

(
(τij)sfs −

2

3
ksfs δij

)
(30)

and

Π2
ij = −c2

(
P 1
ij −

1

3
P 1
mmδij

)
(31)
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where c1 is the Rotta coefficient modified to account for the spectrum splitting whereas c2 remains
the same as in statistical modeling. The diffusion term Jij is modeled assuming a well known
gradient law hypothesis

Jij =
∂

∂xk

(
ν
∂(τij)sfs
∂xk

+ cs
ksfs
εsfs

(τkl)sfs
∂(τij)sfs
∂xl

)
(32)

where cs is a constant numerical coefficient. The subfilter scale energy transport equation is
obtained from equation (27) by contraction of tensor (τij)sfs

∂ksfs
∂t

+
∂

∂xk

(
ksfsūk

)
= P − εsfs + J (33)

where P = Pii/2 = P 1 + P 2 with

P 1 = −(τij)sfs
∂ūj
∂xi

(34)

and

P 2 =
D∆

Dt

∂ksfs
∂∆

(35)

and J = Jmm/2. In the case where ∆ = ∆(t), the commutation term appearing in equation (35)
reduces to

P 2 =
∂∆

∂t

∂ksfs
∂∆

(36)

whereas in the case where ∆ = ∆(xi), it is given by

P 2 = ūj
∂∆

∂xj

∂ksfs
∂∆

(37)

The subfilter dissipation-rate εsfs equation including the commutation terms is modeled as

∂εsfs
∂t

+
∂

∂xk

(
εsfsūk

)
= cε1

εsfs
ksfs

P − cε2sfs
ε2sfs
ksfs

+ Jε (38)

where Jε denotes the diffusion term modeled as

Jε =
∂

∂xj

(
ν
∂εsfs
∂xj

+ cε
ksfs
εsfs

(τjm)sfs
∂εsfs
∂xm

)
(39)

and where cε is a constant coefficient. As mentioned by Chaouat and Schiestel (2005, 2012), the
coefficient cε2sfs is now a linear function of the ratio of the subfilter energy to the total energy
ksfs/k that is calibrated using a general Von Kármán spectrum E(κ) defined as

E(κ) =
2
3β(κLe)

α−1Lek

[1 + β(κLe)α]1+γ (40)

where αγ = 2/3, β = (3CK/2)−γ and CK ≈ 1.45 is the Kolmogorov constant, Le = k3/2/ε,
verifying limκ→∞E(κ) = CKε

2/3κ−5/3, leading to

cε2sfs(ηc) = cε1 +
cε2 − cε1

[1 + βηαc ]γ
(41)
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and where the parameter ηc is defined as

ηc = κcLe =
π

∆

k3/2

ε
(42)

referring to the total energy k = 〈ksfs〉 + 〈kles〉 and the total dissipation-rate ε = 〈εsfs〉 + 〈εles〉.
This parameter acts like a dynamic parameter which depends on the location of the cutoff within
the energy spectrum. In equation (42), ∆ is the effective filter width around the cell Ω which is
computed by

∆ = ∆a

(
ζ + (1− ζ)

∆b

∆a

)
(43)

where the filters lengths ∆a and ∆b are defined by ∆a = (∆1∆2∆3)1/3 and ∆b = (∆2
1 + ∆2

2 + ∆2
3)/3)1/2

and ζ is a parameter set to 0.8. As a result, the function cε2sfs introduced in equation (38) then
controls the relative amount of turbulence energy contained in the subfilter range during the com-
putation. Assuming that the large and small scale fluctuations are uncorrelated, the total stress
τij then reads (Chaouat and Schiestel, 2007; Chaouat, 2017a)

τij = 〈(τij)sfs〉+ 〈(τij)les〉 (44)

where the resolved scale energy tensor is defined as

(τij)les = ūiūj − 〈ui〉 〈uj〉 (45)

The statistical average of the resolved stress which corresponds to the correlation of the large scale
fluctuating velocities is computed by a numerical procedure using the relation

〈(τij)les〉 = 〈ūiūj〉 − 〈ūi〉 〈ūj〉 =
〈
u<i u

<
j

〉
(46)

where u<i = ūi − 〈ui〉 and u>i denote the large and small scale fluctuating velocities, respectively.
The average of the subfilter scale stress is

〈(τij)sfs〉 = 〈uiuj〉 − 〈ūiūj〉 =
〈
u>i u

>
j

〉
(47)

Consequently, the Reynolds stress tensor given by equation (44) reads

τij =
〈
u>i u

>
j

〉
+
〈
u<i u

<
j

〉
(48)

The statistical turbulent energy is obtained as half the trace of equation (44)

k = 〈ksfs〉+ 〈kles〉 (49)

The resolved part of the dissipation rate εles corresponds to the correlation of the large-scale
fluctuating velocities. The low Reynolds number formulation of the subfilter scale model is given
in Appendix A with the functions listed in Table 1.
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6 Numerical estimate of extra terms arising from the

non-commutativity

6.1 Velocities

The commutation term introduced in the mass equation (16) is given by equation (15) and the one
appearing in the motion equation (18) is given by equation (21). The calculus of βT (φ) requires to
evaluate the derivative ∂φ/∂∆. In the present case, following the method of Iovieno and Tordella
(2003), this derivative is computed by applying a second filtering operation with a larger filter
width leading to

∂φ̄

∂∆
= lim

δ∆→0

φ̄(∆̄ + δ∆̄)− φ̄(∆̄)

δ∆̄
≈ φ̄( ˜̄∆)− φ̄(∆̄)˜̄∆− ∆̄

(50)

where ∆̄ is the filter width of the grid-size ∆, and ˜̄∆ denotes the superfilter width of ∆. The
approximation (50) can be applied easily for the velocities φ = ui

∂ūi
∂∆
≈ ūi(

˜̄∆)− ūi(∆̄)˜̄∆− ∆̄
=
˜̄ui − ūi˜̄∆− ∆̄

(51)

but it deserves a special attention for the stresses φ = τij .

6.2 Turbulent stresses

The commutation term appearing in equation (27) and defined by equation (26) involving the
derivative of the subfilter scale stress (τij)sfs with respect to the filter width ∆̄ is computed by

∂(τij)sfs
∂∆

≈
(τij)sfs(

˜̄∆)− (τij)sfs(∆̄)˜̄∆− ∆̄
=

(ũiuj − ˜̄ui˜̄uj)− (uiuj − ūiūj)˜̄∆− ∆̄
(52)

Equation (52) can be rewritten in a more practical form involving the stresses (τij)sfs = uiuj−ūiūj
and ˜(τij)sfs = ũiuj − ˜̄uiūj by

∂(τij)sfs
∂∆

≈
˜(τij)sfs − (τij)sfs + (˜̄uiūj − ˜̄ui˜̄uj)˜̄∆− ∆̄

(53)

As equation (53) is difficult to use in practice, we prefer to derive a more practical formulation.
For any variable φ, we have shown in section 2 that

〈
φ̄
〉
≈ 〈φ〉 if the filter width is not too large.

This approximation can be used to simplify equation (53). Indeed, the first term appearing in
equation (53) is small because its statistical average approaches zero〈

˜(τij)sfs − (τij)sfs

〉
=
〈
ũiuj − ˜̄uiūj〉− 〈uiuj − ūiūj〉 ≈ 0 (54)

On the other hand, the second term (˜̄uiūj − ˜̄ui˜̄uj) appearing in equation (53) can be developed
using the relative velocity u∗i defined as u∗i = ūi − ˜̄ui as follows

˜̄uiūj − ˜̄ui˜̄uj = ˜̄̃ui˜̄uj + ˜̄̃uiu∗j + ˜̄̃uju∗i + ũ∗iu
∗
j − ˜̄ui˜̄uj (55)
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In a first approximation, considering the higher terms in the right hand side of this equation, it a
simple matter to show that this equation (55) reduces to

˜̄uiūj − ˜̄ui˜̄uj ≈ ũ∗iu∗j (56)

So that equation (53) can be reasonably well approximated in a statistical sense by

∂ 〈(τij)sfs〉
∂∆

≈

〈
ũ∗iu

∗
j

〉
˜̄∆− ∆̄

(57)

that is the essential contribution of the commutation term for the stresses. The derivative of the
subfilter turbulent energy with respect to the filter width is given by contraction of the tensor
(τij)sfs in equation (57)

∂ 〈ksfs〉
∂∆

≈ 1

2

〈
ũ∗iu

∗
i

〉
˜̄∆− ∆̄

(58)

6.3 Discrete approximation to the top hat filter

In practice, the variable φ̄( ˜̄∆) is determined by applying a discrete approximation to the top hat
filter written in the form as (Vichnevetsky, 1982; Geurts and van der Bos, 2005)

φ̄( ˜̄∆, xi) = G(φ̄)(∆̄, xi) =
∑
m∈Z

amφ̄(∆̄, xi+m) (59)

where am are numerical coefficients. The effect of ∆ on a Fourier mode φ = exp (iκx) is given by

G(φ)(xi) =
∑
m∈N

am cos(mκ∆) exp(iκxi) = G(κ∆)φ(xi) (60)

The coefficients am are determined in the spectral space by satisfying the conditions G(0) = 1,
G(π) = 0 and ∂nG/∂κn = 0 at κ = 0 for n ∈ N in order to get a function as flat as possible in the
neighborhood of κ = 0 (Vichnevetsky, 1982). As a result, it is found that the filter of second order
accuracy in space is given by a0 = 1/2, a1 = a−1 = 1/4 and am = 0 for |m| ≥ 2 whereas for the
fourth-order filter, a0 = 5/8, a1 = a−1 = 1/2, a2 = a−2 = −1/8 and am = 0 for |m| ≥ 4. For the
second order accurate filter, note that the trapezoidal rule applied to the top hat filter coincides
with the spectral method yielding the same coefficient values am. The formulation of the discrete
second order accurate filter (59) can be extended to the case of non-uniform filter width using the

trapezoidal rule. In this case, the variable ˜̄φ is computed as

˜̄φi =
φ̄i−1(∆̄i−1 + ∆̄i) + φ̄i(2∆̄i + ∆̄i−1 + ∆̄i+1) + φ̄i+1(∆̄i + ∆̄i+1)

2∆̄i−1 + 4∆̄i + 2∆̄i+1
(61)

The super filter width ˜̄∆i is computed as ˜̄∆i = ∆̄i + (∆̄i−1 + ∆̄i+2)/2. Taking into account equation
(61), it is then simple matter to show that the derivative ∂φ̄/∆ is obtained by(

∂φ̄

∂∆

)
i

=
φ̄i−1(∆̄i−1 + ∆̄i)− φ̄i(2∆̄i + ∆̄i−1 + ∆̄i+1) + φ̄i+1(∆̄i + ∆̄i+1)

(∆̄i−1 + 2∆̄i + ∆̄i+1)(∆̄i−1 + ∆̄i+1)
(62)
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The algorithm (62) can be easily implemented in CFD codes to compute the commutation terms
on varying grids. Moreover, equation (62) indicates that the commutation error is of second order
effect O(∆̄)2 with respect to the filter-width.

7 Interpretation of the commutation term in the spec-

tral space

It is possible to calculate the derivative of the statistical subfilter turbulent energy 〈ksfs〉 with
respect to the grid-size ∆ considering the density spectrum E(κ) as follows

∂ 〈ksfs〉
∂∆

=
∂ 〈ksfs〉
∂κc

∂κc
∂∆

=
∂κc
∂∆

∂

∂κc

∫ ∞
κc

E(κ)dκ =
κ2
cE(κc)

π
(63)

The density spectrum E(κ) is given by equation (40), so that the derivative ∂ 〈ksfs〉 /∂∆ can be
calculated as follows

∂ 〈ksfs〉
∂∆

=
2

3
β(πLe)

α

(
〈ksfs〉
k

) γ+1
γ k

∆α+1
(64)

In the case where the cutoff wave number is placed in the inertiel zone of the spectrum, equation
(64) leads to

∂ 〈ksfs〉
∂∆

=
2

3

〈ksfs〉
∆

(65)

Equation (64) can be an alternative to the use of equation (58) that requires to perform numerical
calculations. But even if equation (64) is simple to apply, we prefer however to consider equation
(58) because it guaranties that the gain or loss of energy in the resolved part of the spectrum is
exactly recovered in the modeled part of the spectrum at each grid-point of the mesh during the
simulation. The connection with the spectral space is obtained by introducing the additional flux
of energy transfer K(κc) which results from the variation of the spectrum splitting. In the case
of simulation of homogeneous turbulence performed on a varying grid-size in time ∆ = ∆(t), the
transport equation in a statistical sense of the subfilter turbulent energy reads (Schiestel, 1987;
Chaouat and Schiestel, 2007; Chaouat and Schiestel, 2013)

∂ 〈ksfs〉
∂t

= P (κc, κd) + F(κc) +K(κc)− ε (66)

where

P (κc, κd) = −
∫ κd

κc

ϕij(κ)
∂ 〈ui〉
∂xj

dκ = −〈(τij)sfs〉
∂ 〈ui〉
∂xj

(67)

and

F(κc) = −
∫ κc

0
T (κ)dκ =

∫ ∞
κc

T (κ)dκ (68)

where κd is the dissipative wave number, ϕij(κ) is the spherical mean of the Fourier transform of
the two-point fluctuating velocity correlation tensor (Cambon, 1981; Schiestel, 1987; Chaouat and

12



Schiestel, 2007), T (κ) denotes the spectral transfer term and K(κc) is the additional flux of energy
transfer resulting from the variation in the cutoff location given by

K(κc) = −E(κc)
∂κc
∂t

(69)

In equation (66), the dissipation-rate ε is interpreted as a spectral flux defined by ε = F(κd)+K(κd).
Equation (66) allows to determine the role played by the term involving the variation of the cutoff
wave number on the modeled/resolved scales. In the case where the grid-size increases in time
∂∆(t)/∂t > 0 or K(κc) > 0, then a part of the energy contained into the resolved scales is removed
and fed into the modeled spectral zone, whereas on the contrary, when ∂∆(t)/∂t < 0 or K(κc) < 0,
a part of energy coming from the modeled zone is injected into the resolved scales. The flux transfer
K(κc) can be developed into the form as

K(κc) = −E(κc)
∂κc
∂t

= −E(κc)
∂κc
∂∆

∂∆

∂t
=
∂ 〈ksfs〉
∂∆

∂∆

∂t
(70)

showing clearly that it is a function of the derivative of the subfilter energy to the grid-size. One
can see that the flux transfer K(κc) given by equation (70) exactly corresponds to the commutation
term (36) involved in the transport equation for the subfilter energy (33). It is possible to obtain
a theoretical expression for K(κc) by substituting (64) into equation (70)

K(κc) =
2

3
β(πLe)

α

(
〈ksfs〉
k

) γ+1
γ k

∆α+1

∂∆

∂t
(71)

In parallel with equation (66), the transport equation of the subfilter scale stress 〈(τij)sfs〉 reads
(Schiestel, 1987; Chaouat and Schiestel, 2007; Chaouat and Schiestel, 2013)

∂ 〈(τij)sfs〉
∂t

= Pij(κc, κd) + Πij(κc, κd) + Fij(κc) +Kij(κc)− εij (72)

where the different terms appearing in this equation are, respectively, the production, redistribu-
tion, transfer, additional flux due to the variation in the spectrum splitting and dissipation. These
terms are defined by

Pij(κc, κd) = −
∫ κd

κc

[
ϕik(κ)

∂ 〈ui〉
∂xk

+ ϕjk(κ)
∂ 〈uj〉
∂xk

]
dκ (73)

Πij(κc) =

∫ κd

κc

ψij(κ)dκ (74)

Fij(κc) = −
∫ κc

0
Tij(κ)dκ =

∫ ∞
κc

Tij(κ)dκ (75)

and

Kij(κc) = −ϕij(κc)
∂κc
∂t

(76)

The additional flux Kij(κc) corresponds to the production term P 2
ij given by equation (29) in case

where ∆ = ∆(t).
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8 Realizability conditions

The issue to address when performing numerical simulations of turbulent flows in CFD is to get
physical solutions that are as close as possible to real flows. Many tools allow to improve the
numerical solution given by the solving of the Navier-Stokes equations and turbulence model.
Among these tools, one deals with the realizability conditions. The constraint of realizability
requires that the Reynolds stress tensor τij satisfies the conditions (Schumann, 1977; Speziale et
al., 1994)

τii ≥ 0 (77)

τ2
ij − τiiτjj ≤ 0 (78)

det(τij) ≥ 0 (79)

where the summation convention is suspended in equations (77) and (78). Obviously, these relations
concerned with the Reynolds stress tensor τij also hold for the subfilter scale stress tensor (τij)sfs
in LES simulation when only the small scales are modeled. This question was examined by Vreman
et al. (1994) for the exact subfilter scale stress and its modeling through several eddy viscosity
models. First at all, these authors used the mathematical definition (1) of the filtering operation
to calculate the exact subfilter scale stress from its definition (τij)sfs = τ(ui, uj). As a result, the
tensor (τij)sfs was formulated into the mathematical form as

(τij)sfs(x) =

∫
Ω
G [x− ξ,∆(x, t)] ](ui(ξ)− ūi(x)(uj(ξ)− ūj(x)] dξ (80)

showing that the stress tensor forms a Gram matrix of inner products composed by the velocity
vi(x, ξ) = ui(ξ) − ūi(x) that is positive semi definite if the filter kernel G is positive. As a
consequence, the exact tensor (τij)sfs then satisfies the realizability conditions if the top hat filter
or Gaussian filter is used in the filtering process. But the spectral cutoff filter that can produce
negative values ofG does not satisfy the realizability conditions. Taking into account this argument,
we will discard the spectral cutoff filter and we will consider the top hat filter (60) in this work
because it is the more convenient in practice. We now analyze the modeled subfilter tensor (τij)sfs
given by its transport equation (27). Because of its complex form, it is not possible to examine
whether (τij)sfs verifies inequalities (77), (78) and (79) [36]. The only way to guarantee realizability
in the hierarchy of second moment closure is via the weak form of realizability which requires that
when a principal subfilter scale stress component vanishes, its time derivative must be positive
to prevent negative values of the normal subfilter stress components to appear (Speziale et al.,
1994). In a first step, we consider the case of homogeneous turbulence that is the starting point
to analyze the question of realizability and examine this question in a coordinate system aligned
with the principal axes of the stress tensor (Chaouat and Schiestel, 2009). In the principal axes of
coordinate, equation (27) can be written in the compact form as

∂(τ∗ii)sfs
∂t

= P 1∗
ii +

∂∆

∂t

∂(τ∗ii)sfs
∂∆

+ Π∗ii −
2

3
εsfs (81)

where in a general way the tensor φ∗ij denotes the tensor φij expressed in the principal axes of
coordinate and where the Einstein convention is now suspended for repeated indices ii. When
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the stress component (τ∗ii)sfs vanishes, it can be seen that the production term expressed in the
principal axes P ∗ii goes to zero so that the weak form of the realisability condition finally implies
the constraint

c1 > 1− 1

εsfs

(
c2P

1 +
3

2

∂∆

∂t

∂(τ∗ii)sfs
∂∆

)
(82)

to be verified. From the formulation of the subfilter scale stress model indicated in Appendix A,
we know that the function c1 is greater than unity and that the function c2 is positive. So that
inequality (82) is verified if

c2P
1 +

3

2

∂∆

∂t

∂(τ∗ii)sfs
∂∆

> 0 (83)

As the production term of the turbulent energy P is usually positive, and greater than the mag-
nitude of the commutation errors, the constraint (82) is usually verified implying that the model
satisfies the weak form of realizability. If this reasoning is correct in most cases, note however
that the production term incidentally can be negative in second moment closure. This situation
corresponds to the case of backscatter effect when energy is transferred from small scales to large
scales. We need then to analyze the sign of the commutation term to know what is its effect on
inequality (83). As shown by equation (64) as well as (58), the derivative of the statistical subfilter
turbulent energy with respect to the grid-size ∆ is positive. We assume that this relation holds
for the instantaneous subfilter energy, so that ∂(τ∗ii)sfs/∂∆ > 0. As a consequence, the sign of the
commutation term is given by the sign of the derivative ∂∆/∂t. As a result, when the grid-size
increases in time, the commutation term is positive and enforces the realizability condition whereas
when ∆ decreases, the reverse situation occurs, the commutation term is negative and weakens
the realizability conditions. If the present analysis has been conducted for homogeneous flows, one
can mention however that realizability violation can be computationally occurred when perform-
ing inhomogeneous flows. But from a physical point of view, the diffusion term (32) in equation
(81) has a stabilizing effect on the motion equation and tends on the contrary to strengthen the
realizability conditions (Chaouat, 2011).

9 Numerical schemes

The numerical simulations are performed using the numerical code developed by Chaouat (2011)
based on a finite volume technique including a Runge-Kutta scheme of fourth-order accuracy in
time with a combination of a quasi-centered scheme of fourth-order accuracy in space. To improve
the stability of the numerical scheme, equations (33), (27) and (38) are integrated in time by an
implicit iterative algorithm (Chaouat, 2011). Previous simulations have shown that this numerical
code was able to reproduce fairly well a large variety of turbulent flows such as for instance the
decaying turbulence (Chaouat and Schiestel, 2009, 2013), flows with wall mass injection (Chaouat
and Schiestel, 2005), rotating flows (Chaouat, 2012), flows with separation and reattachment of
the boundary layer (Chaouat 2010; Chaouat and Schiestel, 2013), wind tunnel flows (Chaouat,
2017b).
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10 Fully developed turbulent channel flow

The fully developed turbulent channel flow is a well documented test case to determine the effect of
a varying grid-size on turbulence including statistical data of mean velocity and Reynolds stresses
(Ghosal and Moin, 1995; Fröhlich et al., 2007). For that purpose, we simulate the turbulent flow in
a computational domain as shown on Fig. 1. The simulations are performed on meshes accounting
for a varying grid-size in the streamwise direction x1 determined by a sudden grid step increase that
is akin to grid discontinuities in the flow direction as well as a progressive grid refinement in the
normal direction to the wall x3 to accurately capture the velocity boundary layer. The dimensions
of the channel in the streamwise, spanwise and normal directions along the axes x1, x2, x3 are
L1 = mδ, L2 = 1.5δ and L3 = δ, respectively, where m is an integer coefficient depending on the
case considered, m = 9 for a mesh of a uniform grid-size and m = 16 for a mesh of increasing grid-
size in the streamwise direction. In order to get a solution that does not depend on the inlet flow
at x1 = 0, the channel is here decomposed into two distinct domains. In the first domain between
x1 = 0 and 3δ, we generate the fully developed turbulent channel flow on a uniform mesh in the
streamwise direction by solving the flow equations and applying a periodic condition between the
inlet and outlet. In the second domain between x1 = 3δ and mδ, we apply an inflow condition at
x1 = 3δ that corresponds to the flow solution of the first domain passing through the section at
x1 = 3δ and a pressure condition at the exit section of the channel. To get a periodic flow in the
first domain, a constant pressure gradient term Gτ = 2ρτu

2
τ/δ is then incorporated in the motion

equation to balance the friction at the upper and lower walls. For the whole channel, a periodic
boundary condition is applied in the spanwise direction x2 so that the flow is homogeneous in
this direction. No slip velocity condition is imposed at the upper and lower walls. This numerical
procedure is very practical because we perform only one computation instead of two computations
that must be afterward matched at the interface. It is then possible to study the effect of the
varying mesh on the numerical solution without any contamination or potential source of errors of
the inlet flow. The grid-size ratio of the mesh in the second domain is defined by ∆1 = f(x1)∆0

where ∆0 is the uniform grid-size and f , a given hyperbolic function. The mesh is uniform in the
spanwise direction. In the normal direction to the wall, the grid points are distributed in different
spacings with a refinement near the wall according to the transformation

x3j =
1

2
tanh [ξj F (ξj) atanh a] (84)

where ξj = −1 + 2(j − 1)/(N3 − 1) (j = 1, 2, · · ·N3), F is a function introduced to moderate the

refinement near the wall, F (ξj) =
√

(1 + ξ2
j )/2, the parameter a is a coefficient set to 0.990 for

N3 = 84. Numerical simulations of the spatially developing channel flow are performed at the
Reynolds number Rτ = uτδ/2ν = 395 based on the averaged friction velocity uτ and the channel
half width δ/2, leading to the bulk Reynolds Reynolds number Rm = umδ/ν ≈ 13750, where um
denotes the bulk velocity. Several PITM simulations are carried out to assess the effect of the
filter width on the solution. First at all, PITM1 is performed on the uniform mesh for comparison
purpose. Then, PITM2 and PITM3 are performed on the non-uniform mesh accounting for the
increasing grid-size in the streamwise direction with and without the commutation terms included
in equations. In the present case, we will consider the commutation terms arising only from
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Figure 1: Setup of the numerical channel flow simulations

the sudden grid step increase of the grid-size in the streamwise direction and not the commutation
terms caused by the slow varying grid-size in the direction normal to the walls. In the first domain,
the dimensionless distances ∆+ = ∆uτ/ν = (2RτLi)/(Niδ) in wall unit are ∆+

1 = 50, ∆+
2 = 25,

respectively and ∆+
3 ≤ 18.3 whereas in the second domain, ∆+

1 increases up to 400. Note that
the dimensionless coordinate x3/δ is simply linked to the wall unit coordinate x+

3 by the relation
x3/δ = x+

3 /2Rτ where x+
3 = x3uτ/ν. The simulation is compared with data of direct numerical

simulation (Moser et al., 1999).

10.1 Uniform grid-size in the streamwise direction

This case with uniform grid-size is worked out to illustrate the feasibility of the numerical procedure
and to serve as a benchmark for the case with varying grid-size. The PITM1 simulation of the
spatially developing channel flow is performed on a mesh of 144×48×84 grid points. Fig. 2 shows
the streamwise variation of the dimensionless pressure versus the x1 axis coordinate. One can see
that the pressure is almost uniform in the first part of the channel because of the periodic condition
which is applied between the inlet section at x1 = 0 and the intermediate section at x1 = 3δ. Then,
the pressure gradually decreases when moving to the exit section due to the viscous dissipation
effects at the walls. Fig. 3 describes the mean velocity profile 〈u1〉 /uτ in logarithmic coordinate
computed in the first computational domain. The statistics are performed in time and space in
the streamwise and spanwise homogeneous directions x1 and x2. Overall, one can see that the
velocity profile compares very well with the DNS data suggesting that the turbulence model is also
well calibrated for predicting confined flows. Moreover, as the grids are sufficiently refined near
the walls, the velocity boundary layer is perfectly well reproduced according to the data. Fig. 4
shows the turbulence intensities 〈(τij)sfs〉1/2 /uτ and 〈(τij)les〉1/2 /uτ associated with the subfilter
scales (SFS) and large scales (LES) of the flow. As it can be observed, the core flow in the center
of the channel is mainly governed by the large scales whereas the wall flow region is dominated by
the subfilter scales because of the presence of the peaks of turbulence in the immediate vicinity of
the wall. Fig. 5 displays the profiles of the streamwise, spanwise and normal turbulence intensities

normalized by the bulk velocity τ
1/2
ii /uτ . Overall, the shape of the profiles is well recovered. The

flow anisotropy is fairly well reproduced in the near wall region even if the level of the streamwise
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Figure 2: Streamwise variation of the instantaneous pressure P/P0 versus x1-axis coordinate. PITM1,
•. Rτ = 395.
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Figure 3: Mean velocity profile 〈u1〉 /uτ . in logarithmic coordinate. PITM1, •. DNS, — . Rτ = 395.

intensity is however slightly overpredicted while the level of the normal and spanwise intensities
are slightly underpredicted in the wall region, probably due to the use of coarse grids in the
streamwise and spanwise directions. Fig. 6 shows the profiles of the subfilter energy 〈ksfs〉 /u2

τ ,
resolved energy 〈kles〉 /u2

τ , and total energy k/u2
τ with the DNS data versus the dimensionless wall

coordinate x+
3 = x3uτ/ν. As for the turbulent stresses, the shape of the turbulent energy profile
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Figure 4: Subfilter and resolved turbulence intensities in wall unit. Subfilter turbulence 〈(τij)sfs〉1/2 /uτ :
N, i=1; J, i=2; I, i=3. Resolved turbulence 〈(τij)les〉1/2 /uτ : M, i=1; C, i=2; B, i=3. PITM1: Rτ = 395.
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Figure 5: Turbulence intensities in wall unit. τ
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ii /uτ : PITM1: N, i=1; J, i=2; I, i=3. DNS : — .

Rτ = 395.
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Figure 6: Subfilter energy 〈ksfs〉 /u2
τ , resolved energy 〈kles〉 /u2

τ , and total turbulent energy k/u2
τ , versus

the wall unit x+
3 . PITM1: B, ksfs; C, kles; M: k. DNS : — . Rτ = 395.

is well recovered but the level of intensity is overpredicted in the near wall region. The agreement
with the reference data is however better when moving away from the walls to the core flow. Fig.
7 shows the evolution of the subfilter energy 〈ksfs〉 /u2

τ , resolved energy 〈kles〉 /u2
τ , and turbulent

energy k/u2
τ , versus the streamwise direction x1 in the mid-plane of the channel x2 = 0.75δ, and up

to the lower wall at the dimensionless wall distance x+
3 = 20. As a result, all turbulence energies

remain almost constant in the entire channel indicating that the slight drop of the pressure occurred
in the first domain shown in Fig. 2 has no effect on the turbulence level. Fig. 8 describes the
solution trajectories along a vertical line starting from the lower wall towards the upper wall of the
channel at the location x1 = 3δ that are projected onto the second and third invariant plane in the
diagram of Lumley (Lumley, 1978) for the subfilter, resolved and total stresses, respectively. For
each diagram, the solution trajectories remain inside the curvilinear triangle that means that the
realizability conditions are satisfied. This result was expected for the subfilter scale stresses since
it has been demonstrated in section 8 that the turbulence model satisfies the weak form of the
realizability conditions with and without the presence of the commutation terms. In that sense,
Fig. 8 allows to verify this point at a particular location of the channel. This one was also expected
for the resolved scale stresses because of the mathematical form of equation (46). That said, the
fact that the total stresses also verify the realizability conditions was not guaranteed by equations
but it simply means that the turbulent stresses can be fairly well reconstructed as a whole from
the subfilter and resolved stresses. These diagrams also indicate that the PITM simulation is able
to reproduce the flow anisotropy that evolves from a two component limit turbulence state near
the walls towards a more or less isotropic turbulence state in the center of the channel. On overall,
this section demonstrates that the numerical procedure associated with Fig. 1 works well. PITM1
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τ , resolved energy kles/u
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τ , and total turbulent energy
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τ , in the streamwise direction x1 at the dimensionless wall distance x+
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performed on a such coarse grid provides results that serve as a benchmark in the following section.

10.2 Increasing grid-size in the streamwise direction

The numerical simulations are performed on a mesh of 124 × 48 × 84 grid points. In the first
computational domain of the channel, the grid-size ∆0 is constant while in the second domain,
∆(x1) increases according to the function

f(x1) =
5

2
+

3

2
tanh

[
4
(x1

δ
− 5
)]

(85)

which approximates locally a step function on few cells of the mesh. This function is chosen such
that the ratio of the grid-size ∆(x1)/∆0 takes on the maximum value 4 as shown by Fig. 9. As it
can be observed, this ratio presents a strong variation between x1/δ = 4 and 7. In practice, such
a sudden grid step increase in the grid-size of the mesh occurs when simulating industrial flows in
complex geometries. To approach the details of the geometry, the generation of the mesh often
leads to locally distorted cells Ω with high variations of the grid-size from one cell to another one.
This problem is more acute for unstructured grids. In the present case, as the grid-size in the
spanwise and normal directions ∆2 and ∆3 is kept constant when moving in the x1 direction, the
effective grid size ∆ defined by equation (43) is in fact twice as high as the uniform grid-size. Fig. 10
shows the cross section of the mesh illustrating the grid-size variation in the streamwise direction.
The computations are running for a sufficient length time to get statistics that are independent of
the initial conditions. For each test case, the statistics are furthermore achieved in time and space
in the spanwise homogeneous direction x2. So that, for any flow variable φ, the statistical variable
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Figure 8: Solution trajectories along a vertical line in the cross section located at x1/δ = 3 projected
onto the second-invariant/third-invariant plane formed by the anisotropy tensor. (a) Subfilter scale
stresses, (b) Resolved scale stresses, (c) Reynolds stresses. PITM1: •. Rτ = 395.
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Figure 9: Evolution of the grid-size ratio ∆(x1)/∆0 in the streamwise direction. 1 ≤ ∆(x1)/∆0 ≤ 4.

Figure 10: Cross-section of the mesh of 124× 48× 84 grid points.
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〈φ〉 is a function of x1 and x3 coordinates when the convergence is reached. Fig. 11 depicts the
evolution of the dimensionless commutation term βT∗(ui) = βT (ui)δ/u

2
m defined by equation (21)

for i=1,2,3 in the mid-plane of the channel at x3/δ = 1/2 versus the dimensionless distance x1/δ
at a given time. As expected, βT (ui) is non-zero only in the zone including the sharp variation
of the grid-size. To get an insight about the distribution of the commutation errors due to the
turbulence, Fig. 12 shows the contours of the the dimensionless commutation term P 2

∗ = P 2δ/u3
τ

defined by equation (37) in the mid cross section (x1, x3) at the spanwise distance x2 = 0.75δ. This
term is computed by means of equation (58) that is a good approximation ensuring positive values.
In a first approximation, P 2 reduces to

P 2 ≈ ū1
∂∆

∂x1

∂ksfs
∂∆

(86)

showing its dependence versus the variation of the grid-size ∂∆/∂x1 and the derivative of the
subfilter energy with respect to the grid-size ∂ksfs/∂∆. As expected, the production term is of
higher intensity in the near wall flow region. This term P 2 goes to zero when moving to the center
of the channel. Fig. 13 describes the evolution of P 2 in the streamwise direction at x+

3 = 20
(x3/δ = 0.023) and x+

3 = 50 (x3/δ = 0.06). In the region of the channel where the grid-size ∆
varies in space as shown on Fig. 9, the curve exhibits a regular evolution characterized by a sharp
increase and decrease of energy production. The commutation term takes on its maximum value
at x1/δ = 5 since the derivative ∂∆/∂x1 = 6∆0/δ is highest. Also in accordance with the findings
and observations made on Fig. 12, the commutation term is of higher value at x+

3 = 50 than at
x+

3 = 20. Fig. 14 shows the evolution of the ratio P 2/P 1 in the streamwise direction both at
x+

3 = 20 and at x+
3 = 50, where P 1 is the production of the turbulent energy defined by equation

(34). A similar regular evolution as the one observed on Fig. 13 is obtained. The maximum
magnitude of the ratio P 2/P 1 is about 15 % at x+

3 = 50 that is appreciable, so one can expect a
possible effect of the commutation errors on the solution. In the following, we examine the velocity
and stress profiles returned by PITM2 and PITM3 at two sections of the channel at x1/δ = 5
where ∆1/∆0 = 2.5 and at x1/δ = 10 where ∆1/∆0 = 4. Fig. 15 exhibits the mean velocity
profile 〈u1〉 /uτ in logarithmic coordinate computed at these two locations. Overall, one can see
that these profiles compare relatively well with DNS in the boundary layer but the velocities are
slightly overpredicted in the center of the channel. In comparison with Fig. 3, the agreement
with the DNS data is less favorable. One can remark that this discrepancy is lower at x1/δ = 5
than at x1/δ = 10. At a first sight, no significant differences are observed between the PITM2 and
PITM3 velocity profiles although the PITM2 velocities are a little bit closer to DNS. This outcome
suggests that the accounting for the commutation terms in equations has no major impact on
the mean flow velocity, probably due to the fact that PITM is a continuous hybrid RANS-LES
non-zonal method. This outcome differs somewhat from the one associated with zonal RANS-LES
methods where it is commonly known that the neglect of the commutation terms is responsible
for the log-layer mismatch of the velocity profile (Hamba, 2009). Fig. 16 shows the turbulent
energy profiles k/u2

τ versus the dimensionless wall coordinate x+
3 = x3uτ/ν at x1/δ = 5 and at

x1/δ = 10. Both simulations return almost the same profile. In particular, the peak of turbulence
is overpredicted in the near wall region at x+

3 ≈ 20. But at x1/δ = 5, the turbulence intensity
is well predicted in the center of the channel whereas it is under predicted at x1/δ = 10. As the
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agreement with the DNS is better at x1/δ = 5 than at x1/δ = 10, one can deduce that the solution
slightly deteriorates when coarsening the grids. From these Figs., one can see that the effect of
the commutation terms on the turbulence is barely noticeable even if PITM2 returns however a
turbulence intensity slightly higher for x+

3 > 100 than PITM3 because of the additional production
term P 2. To deepen the analysis, it is therefore worth investigating the evolution of the turbulent
energy and normal stresses in the streamwise direction x1 at the wall unit x+

3 = 20 and x+
3 = 50

for both simulations. The value x+
3 = 20 is chosen because the turbulence is very high at this

wall distance (see Fig. 6). The one x+
3 = 50 is also considered because the production term P 2

is of higher intensity at x+
3 = 50 than at x+

3 = 20 (see Fig. 13). Fig. 17 shows the evolution of
the subfilter and resolved scale turbulent energies as well as the total energy, 〈ksfs〉 /u2

τ , 〈kles〉 /u2
τ

and k/u2
τ normalized by the averaged friction velocity in the streamwise direction x1 at the wall

unit x+
3 = 20. As expected, it is found that the subfilter scale energy increases as the grid-size

increases since larger scales must be modeled and vice versa, the resolved scale energy decreases
since less scales are computed. Physically, this means that the turbulence model allows to support
the smaller eddies of the fine grid-size that are convected into the coarse grid. At first sight,
the results are identical for both simulations. But according to the sudden grid step increase of
the grid-size (see Fig. 9), the curves associated with PITM2 are however slightly steeper than
those associated with PITM3. For both simulations, the total turbulent energy remains relatively
constant suggesting that the small part of energy that has been gained by the subfilter scales when
passing from the fine grid to the coarse grid is lost by the resolved scales. In comparison with the
evolution of the total energy shown in Fig. 7, a slight overshoot of energy occurs at about x1/δ = 5
for both simulations.
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Figure 11: Evolution of the commutation term βT∗(ui) = βT (ui)δ/u
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velocity given by equation (21) versus the dimensionless distance x1/δ at x3/δ = 1/2. ◦, i=1; C, i=2;
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Figure 12: Contours of the commutation term of the instantaneous flow P 2
∗ = P 2δ/u3

τ given by equation
(37). 0 < P 2

∗ < 5 (from blue to red) in the mid-plane of the channel at x2 = 0.75δ.
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Figure 13: Evolution of the commutation term P 2
∗ = P 2δ/u3

τ given by equation (37) associated with
the turbulent energy versus the dimensionless distance x1/δ at different wall distance. •, x+

3 = 20; N,
x+
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Figure 15: Mean velocity profile 〈u1〉 /uτ in logarithmic coordinate at various locations. (a) x1/δ = 5,
(b) x1/δ = 10. PITM2, N; PITM3, •. DNS, — . Rτ = 395.
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Figure 16: Turbulent energy k/u2
τ at various locations. (a) x1/δ = 5, (b) x1/δ = 10. PITM2, N;

PITM3, •; DNS, — . Rτ = 395.
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Figure 17: Evolution of the subfilter, resolved and total turbulent energy 〈ksfs〉 /u2
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the streamwise direction at the dimensionless wall distance x+
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Figure 18: Evolution of the subfilter, resolved and total turbulent stress 〈(τ11)sfs〉 /u2
τ , 〈(τ11)les〉 /u2
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τ , in the streamwise direction at the dimensionless wall distance x+
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Figure 19: Evolution of the subfilter, resolved and total turbulent stress 〈(τ22)sfs〉 /u2
τ , 〈(τ22)les〉 /u2

τ ,
τ22/u

2
τ in the streamwise direction at the dimensionless wall distance x+
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Figure 20: Evolution of the subfilter, resolved and total turbulent stress 〈(τ33)sfs〉 /u2
τ , 〈(τ33)les〉 /u2

τ ,
τ33/u

2
τ in the streamwise direction at the dimensionless wall distance x+

3 = 20. PITM2: sfs, J; les, I;
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Figure 21: Evolution of the subfilter, resolved and total turbulent energy 〈ksfs〉 /u2
τ , 〈kles〉 /u2

τ , k/u
2
τ in

the streamwise direction at the dimensionless wall distance x+
3 = 50. PITM2: sfs, J; les, I; total, N.

PITM3, •. Rτ = 395.
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Figure 22: Evolution of the subfilter, resolved and total turbulent stress 〈(τ11)sfs〉 /u2
τ , 〈(τ11)les〉 /u2

τ ,
τ11/u

2
τ in the streamwise direction at the dimensionless wall distance x+

3 = 50. PITM2: sfs, J; les, I;
total, N. PITM3, •. Rτ = 395.
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Figure 23: Evolution of the subfilter, resolved and total turbulent stress 〈(τ22)sfs〉 /u2
τ , 〈(τ22)les〉 /u2

τ ,
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2
τ , in the streamwise direction at the dimensionless wall distance x+

3 = 50. PITM2: sfs, J; les, I;
total, N. PITM3, •. Rτ = 395.
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Figure 24: Evolution of the subfilter, resolved and total turbulent stress 〈(τ33)sfs〉 /u2
τ , 〈(τ33)les〉 /u2

τ ,
τ33/u

2
τ , in the streamwise direction at the dimensionless wall distance x+

3 = 50. PITM2: sfs, J; les, I;
total, N. PITM3, •. Rτ = 395.

The evolution in the streamwise direction of the subfilter, resolved and total stresses normalized
by the friction velocity, 〈(τii)sfs〉 /u2

τ , 〈(τii)les〉 /u2
τ and τii/u

2
τ , are plotted in Figs. 18, 19, 20. As
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Figure 25: Evolution of the turbulence length-scale Le = k3/2/ε in the streamwise direction at the
dimensionless wall distance x+

3 = 20. PITM2, N; PITM3, •. Rτ = 395.
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Figure 26: Evolution of the turbulence length-scale Le = k3/2/ε in the streamwise direction at the
dimensionless wall distance x+

3 = 50. PITM2, N; PITM3, •. Rτ = 395.
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Figure 27: Solution trajectories along a vertical line in the cross section located at x1/δ = 5 projected
onto the second-invariant/third-invariant plane formed by the anisotropy tensor. (a) Subfilter scale
stresses, (b) Resolved scale stresses, (c) Reynolds stresses. PITM2, N; PITM3, •. Rτ = 395.
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(a)

(b)

Figure 28: Vortical activity illustrated by the Q isosurfaces at Rτ = 395, Rm = 13750. (Q = 10 s−2).
PITM2 simulation 144 × 48 × 84. (a), View in real ratio [0, 16δ] x [0, 1.5δ] x [0, δ]. (b), Enlargement
view [3δ, 8δ] x [0, 1.5δ] x [0, δ].
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expected for both simulations, Fig. 18 shows that the streamwise subfilter scale stress 〈(τ11)sfs〉
increases while the streamwise resolved stress 〈(τ11)les〉 decreases according to the increase of the
grid-size, but the total stress τ11 remains almost constant, the subfilter scales and resolved scales
are just compensating from each other. Figs. 19 and 20 display the evolution of the normal
stresses τ22 and τ33 in the streamwise direction. First at all, it can be noticed that their turbulence
intensities are very low in comparison with the one associated with τ11, more precisely, τ11/τ22 ≈ 3
while τ11/τ33 ≈ 6. The subfilter stress (τ22)sfs is almost constant when passing from the fine grid
to the coarse grid but the resolved stress (τ22)les decreases significantly leading to a diminution of
the total stress τ22. Surprisingly, the subfilter stress (τ33)sfs (note that (τ33)sfs > (τ33)les) slightly
decreases when moving from the fine grid to the coarse grid but as expected, the resolved stress
(τ33)les also decreases. On overall, it is found that the turbulent stress profiles returned by PITM2
and PITM3 are quite similar from each other suggesting that the accounting for the commutation
terms in equations has a weak effect on the results, at least at the wall unit x+

3 = 20. But as shown
on Fig. 14, the ratio P 2/P 1 being higher at x+

3 = 50 than at x+
3 = 20, it is worth analyzing these

stresses at x+
3 = 50. Figs. 21, 22, 23 and 24 show the evolution of these stresses in the streamwise

direction at x+
3 = 50. In particular, Fig. 21 displays the evolution of the subfilter, resolved and

total turbulent energies. Although the sharing out of turbulence among the subgrid and resolved
scales varies when going from the fine grid to the coarse grid, the total energy reached at x1/δ = 5
is well recovered at the exit x1/δ = 15 but a drop of energy has occurred at the beginning of the
grid enlargement. It is found that the accounting for the commutation terms has a slight beneficial
effect because the diminution of energy is slightly lower for PITM2 than for PITM3. Moreover,
in comparison with PITM3, PITM2 tends to reduce the delay in the response of the turbulence
model to the variable grid-size ratio, even if the effect of the commutation terms linked to the
additional flux transfer K(κc) included in equations (33) and (38) of the turbulence model is not
too pronounced. When examining the normal stresses plotted in Figs. 22, 23 and 24, one can
observe that PITM2 and PITM3 return similar evolution except however for the PITM2 subfilter
scale stresses that present a small reincrease of energy just in the region of the grid enlargement due
to the accounting for the commutation term P 2. In particular, the normal stresses τ22 and τ33 are
not maintained constant as they should be, but they decrease too much. This shortcoming should
be attributed to the grid resolution which is too coarse for the turbulence model to accurately
simulate this flow and not to the modeling of the commutation terms accounting for the material
derivate of the filter width D∆/Dt. Figs. 25 and 26 describe the evolution of the turbulence length-
scale Le = k3/2/ε in the streamwise direction in the horizontal plane located both at x+

3 = 20 and
x+

3 = 50. For both PITM simulations, the turbulence length-scale remains almost constant when
moving from the fine grid to the coarse grid. This result is not surprising here since it has been
verified from Figs. 17 and 21 that the total energy k = 〈ksfs〉+ 〈kles〉 is kept perfectly constant at
x+

3 = 20 and roughly constant at x+
3 = 50. We know obviously that the dissipation-rate ε is not

affected by the cutoff wave number κc = π/∆. Fig. 27 shows the solution trajectories along a
vertical line in the cross section located at x1/δ = 5 projected onto the second and third invariant
associated with PITM2 and PITM3. One can see that the realizability conditions are still satisfied
for the subfilter, resolved and total stresses. There is no discernible difference between PITM2 and
PITM3 results indicating that both flows are similar to each other. With the aim to get qualitative
insights into the turbulent flow structures that develop inside the channel and to study the effect
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of the mesh enlargement, large eddies have been depicted on Fig. 28 using the well known Q
criterion for the PITM2 simulation. The value of the parameter Q = 1

2(ΩijΩij − SijSij) is defined
as the balance between the local rotation rate Ω and the strain rate S of the filtered velocity, in
order to identify packets of flow vortices. As no differences were visible at a first sight between
PITM2 and PITM3, the structures associated with PITM3 are not plotted here. This Fig. reveals
the presence of very large longitudinal roll cells that develop in the entire channel illustrating the
three dimensional nature of the flow. As expected, the fact to coarsen the grid-size ratio in the
streamwise direction has the effect to modify the flow structures that become more elongated in
this direction as the flow moves towards the exit section of the channel. One can see a drastic
diminution of eddies computed on the coarse grid. Such qualitative results were also observed by
Chaouat and Schiestel (2013) for the channel flow over periodic hills (see Fig. 3).

11 Concluding remarks

We have analytically derived the complex expressions of the commutation terms appearing in the
filtered turbulence equations using the rules of convolution operators with variable kernels. In this
framework, we have developed a mathematical physics formalism for integrating the commutation
terms in the PITM method and given its physical interpretation in the spectral space. These
terms were computed by means of a superfilter which was applied on the filtered equation of mass,
momentum and turbulence. The application of the fully turbulent channel flow was considered
for illustrating the role of the commutation errors in PITM simulations. In particular, simulations
have been performed on several grids including a sudden grid step increase in the grid-size in the
streamwise direction by means of a numerical tool that is free from any contamination errors from
the inlet condition. As a result, it has been found that PITM2 accounting for the commutation
terms and PITM3 return quite similar results even if a slight improvement in the development
of the subfilter stresses is however obtained for PITM2, relatively to PITM3. The subfilter scale
energy increases as the grid-size increases since larger scales must be modeled and vice versa, the
resolved scale energy decreases as the grid-size increases since less scales are simulated. But the
total turbulent energy remains almost constant, the subfilter and resolved scales energies are just
compensating from each other. In conclusion, it has been found that the impact of the commutation
terms on the flow solution remains moderate even if the grid-size variation is increasing up to 400
% in the streamwise direction, but it has however a slight beneficial effect on the solution. This
outcome of this work should be confirmed by other various extensive applications.

A Low Reynolds number formulation of the subfilter

scale model

The present subgrid stress PITM model based on the transport equations (27) and (38) is used
in a low Reynolds number formulation for approaching walls. The coefficients used in equation
(41) are α = 3 and γ = 2/9. The values of the coefficients used in the model are cε1 = 1.5
and cε2 = 1.9, respectively. The coefficient cε1 comes naturally in analytical developments per-
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formed in the spectral space (Chaouat and Schiestel, 2012). The constants values used in the
diffusion terms in equations (32) and (39) are cs = 0.22 and are cε = 0.18, respectively. The
coefficients c1 and c2 appearing in equations (30) and (31) depend on the Reynolds number
and on the anisotropy tensor (aij)sfs = [(τij)sfs − 2

3ksfsδij ]/ksfs, the subfilter-scale invariants
A2 = (aij)sfs(aji)sfs, A3 = (aij)sfs(ajk)sfs(aki)sfs and the flatness parameter A = 1− 9

8(A2 −A3).
For confined flows, a wall reflection term Π3

ij accounting for the wall effects caused by the reflection
of the pressure fluctuations from rigid walls is added in the redistribution term as follows

Π3
ij = c1w

εsfs
ksfs

((τkl)sfsnknlδij − 3
2
(τki)sfsnknj − 3

2
(τkj)sfsnkni) fw

+ c2w

(
Π2
klnknlδij − 3

2
Π2
iknknj − 3

2
Π2
jknkni

)
fw (87)

The quantity ni is the unit vector perpendicular to the wall, fw is a near wall damping function,
c1w and c2w are some functions calibrated to recover the logarithmic law of the velocity in the
boundary layer. These functions used in the subgrid-scale model stress at low Reynolds number
are listed in table (1). The coefficients α1 = 1.4/400 and α2 = 1/400.

Functions Expressions
Rt k2

sfs/(νεsfs)

c1

(
[1 + 2.30AA

1/8
2 [1− exp(−(Rt/140)2)]

)
α(η)

c2 0.60A1/2(1− exp(−
√
Rt))

c1w −2
3
c1 + 5

3

c2w max(2
3
c2 − 1

6
, 0)/c2

fw min(0.4k
3/2
sfs/(εsfsxn), 2.50)

α (1 + α1η
2
c )/(1 + α2η

2
c )

Table 1: Functions used in the subfilter stress model.
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