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Abstract

Simulations of channel 
ows with e�ects of spanwise rotation and wall injection are

performed using a Reynolds stress model. In this work, the turbulent model is extended

for compressible 
ows and modi�ed for rotation and permeable walls with 
uid injection.

Comparisons with direct numerical simulations or experimental data are discussed in details

for each simulation. For rotating channel 
ows, the second-order turbulence model yields

an asymmetric mean velocity pro�le as well as turbulent stresses quite close to DNS data.

E�ects of spanwise rotation near the cyclonic and anticyclonic walls are well observed. For

the channel 
ow with 
uid injection through a porous wall, di�erent 
ows development from

laminar to turbulent regime are reproduced. The Reynolds stress model predicts the mean

velocity pro�les, the transition process and the turbulent stresses in good agreement with

experimental data. E�ects of turbulence in injected 
uid are also investigated.

Introduction

FOR engineering applications, calculations of turbulent 
ows are generally performed

with a �rst order closure turbulence model based on two transport equations. However,

standard two-equation models using the Boussinesq hypothesis have been incapable of ac-

curately predicting 
ows where the normal Reynolds stresses play an important role, e.g.,

in 
ows with strong e�ects of streamline curvature, system rotation, wall injection or ad-

verse pressure gradient. In turbomachinery, the system rotation a�ects both mean motion,

turbulence intensity and turbulence structure. For instance, due to the Coriolis force, a

channel 
ow subjected to a spanwiswe rotation becomes asymmetric with a turbulence ac-

tivity which is much reduced to the cyclonic side compared with the anticyclonic side, as

�
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observed experimentally by Johnson et al.

1

and also reproduced by direct numerical simu-

lations by Kristo�ersen and Anderson

2

as well as by Lamballais et al.,

3

more recently. This

kind of rotating 
ow is important for turbomachinery industry. Indeed, in order to improve

the performance of jet aircrafts, it is necessary to obtain an accurate description of the 
ow

structure in the di�erent parts of the engine. In solid rocket propulsion,

4

the mass transfer

which results from the propellant combustion modi�es the shear stress distribution across

the 
ow in comparison with the shear stress of wall-bounded 
ow. The internal 
ow in

solid rocket motor, which is produced by mass injection, plays an important role in ballistics

prediction. Modeling such 
ows is a di�cult task because di�erent regimes from laminar to

turbulent can be observed in these motor chambers due to the transition behavior of the

mean axial velocity.

The turbulence model used for the closure of the Reynolds averaged Navier-Stokes equa-

tions must be able to predict accurately such complex 
ows. In this aim, Reynolds stress

models have been proposed in the past decade. Contrary to �rst order turbulence models,

the Coriolis terms associated with system rotation are included in the second-moment clo-

sures. Exact production terms appear as sources (or sinks) in the transport equations for the

individual Reynolds stress components. In the RSM formulation, the pressure-strain corre-

lation term forms a pivotal role by incorporating history and non-local e�ects of the 
ow.

This term has been modeled by assuming homogeneous 
ows that are near equilibrium

5

and recent developments in this direction have been made.

6

For calculations of complex

wall-bounded turbulent 
ows, a wall re
ection term has been incorporated in the model for

reproducing the logarithmic region of the turbulent boundary layer.

7

In the usual approach,

the modeled wall re
ection term requires a variety of ad hoc wall damping functions which

depend on the distance normal to the wall.

8, 9

Durbin

10

has recently proposed an alternative

route of a relaxation approach in which an elliptic equation is introduced and interpreted as

an approximation of the wall e�ects. For simulating complex 
ows, it appears that Reynolds

stress models which take into account these recent developments, are a good compromise

between large eddy simulations, that require very large computing time, and �rst order clo-

sure models, which are not able to predict 
ows accurately.

In this work, the model developed by Launder and Shima

11

has been selected because it

has predicted 
ows fairly despite that its formulation is simpler than those of other models.

12

It contains only a few empirical terms and thus is a good candidate to handle a large variety of


ows. This model is extended for compressible 
ows, adapted for rotation and for permeable

walls with 
uid injection. Comparison with data of direct numerical simulations for non-
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rotating

13

and rotating

3

channel 
ows, and with experimental data for channel 
ows with

wall injection,

14

are discussed in details. In addition, the Lumley representation of the second

and third invariant of the Reynolds stress anisotropy tensor is considered for analyzing the

solutions trajectories.

Governing equations

Turbulent 
ow of a viscous 
uid is considered. As in the usual treatments of turbulence,

the 
ow variable � is decomposed into ensemble Reynolds mean and 
uctuating parts as

� = � + �

0

. In the present case, the Favre-averaged is used for compressible 
uid so that the

variable � can be written as � =

~

� + �

00

with the particular properties

~

�

00

= 0 and ��

00

= 0

where � is the mass density. These relations imply that

~

� = ��=��. The Reynolds average

of the Navier-Stokes equations produces in Favre variables the following forms of the mass,

momentum and energy equations in a rotation frame of reference 
 :
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where u

i

, E, �

ij

, �

ij

, q

i

, �

ijk

are, respectively, the velocity vector, the total energy, the total

stress tensor, the viscous stress tensor, the total heat 
ux vector and the permutation tensor.

The mean stress tensor

�

�

ij

is composed by the mean modi�ed pressure which includes the

centrifugal force potential

�

p

�

= �p�

1

2

��j
�xj

2

, the mean viscous stress ��

ij

and the turbulent

stress �� �

ij

as follows :

�

�

ij
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p

�
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+ ��

ij
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(4)

In this expression, the tensor ��

ij

takes the usual form :
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and the Favre-averaged Reynolds stress tensor is :

�

ij

=

]

u

00

i

u

00

j

(6)

where the quantity � is the molecular viscosity. The mean heat 
ux �q

i

is composed by the

laminar and turbulent 
ux contributions :

�q

i

= ���

@

�

T

@x

i

+ ��

]

h

00

u

00

i

(7)

where T , h and � are the temperature, the speci�c enthalpy and the thermal conductiv-

ity, respectively. Closure of the mean 
ow equations is necessary for the turbulent stress

��

]

u

00

i

u

00

j

, the molecular di�usion �

ij

u

00

i

, the turbulent transport of the turbulent kinetic energy
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^
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00

k
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00
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, and the turbulent heat 
ux ��

]

h

00

u

00

i

.

Turbulence model

The Favre-averaged correlation tensor �

ij

=

]

u

00

i

u

00

j

is computed by means of Reynolds stress

model. In this study, the model of Launder and Shima

11

has been considered and extended

to compressible 
ows using the Favre-averaged. The turbulent model has been also modi�ed

to simulate rotating 
ows. For this, the Coriolis force has been incorporated in the Reynolds

stress transport equation and the pressure-strain correlation has been developed in a form-

invariant under Galilean transformation. This has consisted in replacing the mean vorticity

tensor �!

ij

of usual form,
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1
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�

(8)

which appears in the modeled pressure-strain term, by the absolute mean vorticity tensor

de�ned as

�

W

ij

= �!
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mji




m

, where 
 is the angular velocity vector. So that the pressure-

strain term takes the following form :
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where k is the turbulent kinetic energy, a

ij

= (�

ij

�

2

3

k�

ij

)=k is the anisotropic tensor,

�

S

ij

is

the mean rate of strain de�ned as :

�

S
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=

1

2

�
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i
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@�u

j
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�

(10)

� is the dissipation rate and c

1

and c

2

are functions dependant of the second and third

invariants A

2

= a

ij

a

ji

, A

3

= a

ij

a

jk

a

ki

. Then, equation (9) is rewritten with respect to the

Reynolds stress �

ij

and the mean velocity gradient @�u

i

=@x

j
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form for the slow and rapid contributions, �

1
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, �

2
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15
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1
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and P

R

ij

is the production generated by the rotation :
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Due to these considerations, the modeled transport equation of the Reynolds stress tensor
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The terms on the right-hand side of equation (15) are identi�ed as production by the mean


ow, dissipation rate, slow redistribution, rapid redistribution, wall re
ection and di�usion.

The wall re
ection term has been introduced in the model in order to take into account

the pressure 
uctuations from a rigid wall. The functions c

1

, c

2

, c

w

1

, c

w

2

are empirically

calibrated as : c

1

= 1+ 2:58AA
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where A = 1 � 9=8(A

2

� A

3

) is the 
atness coe�cient parameter

and R

t

= k

2

=�� is the turbulent Reynolds number. In expression (16), f

w

= 0:4k

3

2

=�x

n

is a function dependant of the normal distance to the wall x

n

and n is the normal to the

wall. The coe�ciant c

s

takes the value of 0.22. The dissipation rate � of expression (15) is

computed by means of the following transport equation which takes the form as :
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with c

�1

= 1:45, c
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= 1:9, c

�

= 0:18 where
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The function  

1

in equation (18) is de�ned as :

 

1

= 1:5A

�

P

ii

2�� �

� 1

�

(20)

and has the e�ect to reduce the turbulence length scale. Relative to the model of Shima,

16

the function  

1

has been modi�ed to simulate 
ows with 
uid injection through a porous

wall. The reason is that this function can reach too large values, in comparison with the

standard value c

�1

, when 
ows are far from equilibrium. Due to these considerations, the

function  

1

has been bounded, j 

1

j < 0:125 c

�1

. This has the e�ects to prevent too early lam-

inarization of 
ows. On the other hand, the function  

2

has been reduced to zero because of

its empirical character which alters the rationale formulation of the dissipation rate equation.

Regarding to the molecular di�usion and the turbulent transport terms, a gradient hy-
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pothesis has been considered :

�

ij

u

00

i

�

1

2

��

^

u

00

k

u

00

k

u

00

j

=

�

��+ c

s

��

k

�

�

jk

�

@k

@x

j

(21)

For the heat transfer, the turbulent 
ux is computed by means of the k and � variables :
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where c

p

and P

r

t

are the speci�c heat at constant pressure and the turbulent Prandtl number,

respectively. The coe�ciant c

�

takes the standard value 0.09.

Realizability conditions for the RSM model

The Reynolds stress tensor �

ij

computed by the modeled transport equation (15) must

satisfy the realizability conditions which imply non-negative values of the three principal

invariants

17

I

i

that appear in the characteristic polynomial P (�) = �

3

� I

1

�

2

+ I

2

�� I

3

of

the matrix formed by the components �

ij

. It is easier to examine the question of realizability

in a coordinate system aligned with the principal axes of the Reynolds stress tensor. For

practical reasons, it is also more convenient to analyze the weak form of realizability

17

which requires that when a principal Reynolds stress componant vanishes, its time derivative

must be positive. This ensures that negative energy component cannot occur when this

constraint is satis�ed. Although the basis of the principal axes of the Reynolds stress tensor

is rotating in time, Speziale et al.

18

have shown that the �rst derivative constraint takes the

same formulation in the principal axes. So that the modeled transport equation (15) of the

turbulent stress componant �

(��)

can be written as :
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where the Einstein summation convention is suspended for indices which lies within paren-

theses. The di�usion term as well as the re
ection term are not considered. When the

componant stress �

(��)

vanishes, it can be shown that the production terms P

(��)

and P

R

(��)

are zero so that the weak realisability conditions implies :

c
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� 1 � c
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Due to the expressions of the coe�cients c

1

and c

2

, equation (24) is veri�ed when the

production term P

��

of the turbulent kinetic energy is positive. This corresponds to the

usual case of 
ow physics and ensures therefore the satisfaction of the weak realizability

constraint.

Non-rotating channel 
ow

Numerical simulation of fully developed turbulent channel 
ow is compared with data of

direct numerical simulation

13

for the Reynolds number R

�

= u

�

�=2� = 395, based on the

averaged friction velocity u

�

and the channel width �=2, (see �gure 1 with 
 = 0). Other

useful de�nitions of the Reynolds number include those based on the mean centerline velocity

R

c

= u

c

�=� and the bulk velocity R

m

= u

m

�=�. In the present case, RSM results can be

compared with DNS data computed for incompressible 
ow because the Mach number takes

a low value. The closure equation (22) hasn't in
uenced the numerical results due to the fact

that the temperature is almost uniform. Figure 2 (a) describes the dimensionless velocity

pro�le �u

1

=u

�

in wall coordinates x

+

2

= x

2

u

�

=� in order to illustrate the logarithmic region.

The velocity follows very well the DNS data but the logarithmic pro�le is not completely

resolved in the center of the channel. The ratio of the centerline velocity to the bulk velocity

takes the value 1.13, quite close to DNS result, 1.15. Excellent agreement with Dean's

correlation of u

c

=u

m

= 1:28R

�0:0116

m

= 1:15 is also obtained. The value of the skin friction

coe�cient computed by Dean's suggested correlation c

f

= 0:073R

�0:25

m

= 6:80 agrees well the

DNS result, 6.70. Figures 2 (b) shows the axial, normal and spanwise turbulence intensities

normalized by the wall-shear velocity (

]

u

00

i

u

00

i

)

1=2

=u

�

(i=1,2,3), versus the global coordinates

x

2

=�. The Reynolds stress model provides good agreement with the DNS data. In particular,

the peak of the streamwise turbulence intensity in the wall region is well captured.

Rotating channel 
ows

Numerical simulations of rotating channel 
ows are performed for the Reynolds number

R

�

= 162, based on the friction velocity u

�

which is de�ned as u

�

=

p

1

2

(u

2

�c

+ u

2

�a

) where u

�c

and u

�a

are respectively the friction velocities on the cyclonic and anticyclonic walls. The

Reynolds number based on the bulk velocity takes the value R

m

= 5000. For this application,

di�erent values of the Rossby number R

o

= 3u

m

=�
 are considered, R

o

= 18 and R

o

= 6,

respectively. These values correspond to moderate and high rotation regimes. The vector

rotation considered is along the spanwise direction x

3

as indicated in �gure 1. Figures

3 (a), (b) show the mean dimensionless velocity pro�les normalized by the bulk velocity

�u

1

=u

m

versus the global coordinates for both rotation regimes. These �gures illustrate the

asymmetric character of the 
ow because of the rotation e�ects. For both rotation regimes,
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an excellent agreement between the RSM simulations and DNS data of Lamballais et al.

3

is observed. For these rotating 
ows, it is of interest to note that the mean component �u

1

of the velocity is only a�ected by the Coriolis term through the turbulent shear stress �

12

which appears in the momentum equation (2). For k�� model with a Boussinesq hypothesis,

it is a simple matter to show that the mean velocity pro�le remains perfectly symmetric.

For both simulations performed at R

o

= 18 and R

o

= 6, one can notice that the mean

velocity pro�le exhibits a linear region of constant shear stress. The computation indicates

that the slope of the mean velocity gradient @�u

1

=@x

2

is approximately equal to 2


3

, and

corresponds to a nearly-zero mean spanwise absolute vorticity vector, i.e.,

�

W

3

= �!

3

+2


3

� 0

where !

i

= �

ijk

@u

k

=@x

j

represents the vorticity vector, as already noticed experimentally by

Johnston et al.

1

By considering the Richardson number de�ned as :

R

i

=

�


3

(S

12

� 


3

)

S

2

12

(25)

it can be mentioned that this particular portion of the pro�le represents a region of neutral

stability R

i

� 0. On the cyclonic side, the 
ow is stabilized since the Richardson num-

ber R

i

is positive wheras negative values on the anticyclonic wall imply that the rotation

destabilizes the 
ow.

19

Figures 3 (c),(d) show the evolutions of the axial, normal and span-

wise turbulence intensities normalized by the bulk velocity (

]

u

00

i

u

00

i

)

1=2

=u

m

(i=1,2,3) versus the

global coordinates x

2

=� for both rotation regimes. The model predicts Reynolds turbulent

stresses in excellent agreement with DNS data

3

for the moderate rotation regime R

o

= 18.

For the higher rotation R

o

= 6, a very good agreement is also observed with the DNS data

although that the turbulence intensity is slightly overpredicted in the cyclonic wall region.

The distribution of the turbulence 
uctuations di�ers appreciably in the non-rotating and

rotating cases. When the rotation rate is increased, the turbulence activity is much more re-

duced for the cyclonic wall than for the anticyclonic wall. This suggests that the turbulence

on the cyclonic side may originate from interaction with turbulent anticyclonic side. Due

to the rotation, the 
ow anisotropy is modi�ed. Near the anticyclonic side, the intensity of

the streamwise velocity 
uctuations (

]

u

00

1

u

00

1

)

1=2

=u

m

decreases with the rotation rate wheras

the intensities of the normal and spanwise velocity 
uctuations (

]

u

00

2

u

00

2

)

1=2

=u

m

, (

]

u

00

3

u

00

3

)

1=2

=u

m

are increased. On the other hand, it can be observed a monotonic decrease of the root-mean

square velocity components (

]

u

00

i

u

00

i

)

1=2

=u

m

(i=1,2,3) near the cyclonic channel side. Figures

3 (e),(f) show the Reynolds shear stress normalized by the bulk velocity

]

u

00

1

u

00

2

=u

2

m

in global

coordinates for both Rossby numbers. The asymmetric character of the 
ow is well illus-

trated. Figure 4 describes the evolution of the normalized friction velocities on the cyclonic

and anticyclonic walls u

�

=u

�

versus the number rotation R

ot

= 
�=u

m

= 3=R

o

. The quantity
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u

�

is the friction velocity in the absence of rotation. The present results produced by the

Reynolds stress model appear to be quite close to DNS data of Kristo�ersen and Andersson

2

but slightly overpredicted near the anticyclonic wall in comparison with data of Lamballais

et al.

3

Figure 5 shows the solution trajectories projected onto the plane formed by the sec-

ond invariant and third invariant for the DNS simulation and RSM prediction. The solution

trajectories are computed along a straight line normal to the walls in a cross section of

the channel. It can be seen that the trajectories produced by the model remain inside the

curvilinear triangle which is the realizable region, and agree well with the DNS trajectories.

Due to rotation, the trajectories are not symmetric when moving from the anticyclonic wall

toward the cyclonic wall.

Channel 
ows with wall injection

The objective is to investigate the 
ow in a channel with appreciable 
uid injection

through a permeable wall as indicated in �gure 6. The wall injection is encountered in the

combustion induced 
ow�elds in solid propellant rocket motors (SRM). It is known that the


ow in a channel with wall injection evolves signi�cantly with respect to the distance from

the front wall. Di�erent regimes of 
ow are observed depending on the injection Reynolds

number R

s

= �

s

u

s

�=�, de�ned with the injection density �

s

, the velocity u

s

, the dynamics

viscosity �, at the porous surface and with the height � of the planar channel. In the �rst

regime, the velocity �eld is developed in accordance with the laminar theory. The second


ow regime is characterized by the development of turbulence and is a�ected by the tran-

sition process of the mean axial velocity when a critical turbulence threshold is attained.

Simulations of channel 
ows with wall injection using a �rst order closure model have pro-

vided di�erent predictions of the transition process and overpredicted turbulence levels by

about 300% and 200% in the post-transition of the 
ow.

20{22

Simulations using a second

order closure model with an algebraic relation for the turbulence macro-length scale were

performed by Beddini.

23

Experimental data of Yamada et al.

24

were overpredicted by about

200 % but a reasonable agreement with the data of Dunlap et al.

25

was obtained by gener-

ating pseudo-turbulence at the porous surface. These previous numerical results show that

channel 
ows with wall injection present physics phenomena that are di�cult to reproduce

by simulations. A recent speci�c experimental set up has been realized at ONERA for in-

vestigating the characterictics of injection driven 
ows. The planar experimental facility is

composed of a parallelepipedic channel bounded by a lower porous plate. Values of the duct

length and the channel height are respectively L = 58:1 cm and � = 1:03 cm. Cold air

at 303 K is injected with a uniform mass 
ow rate m = 2:619 Kg=m

2

s through a porous

material of porosities, 8 �m or 18 �m. The injection velocities are �xed by the local pressure
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in the channel. In accordance with the operating conditions of the experimental set up, the

pressure at the head-end of the channel is p

o

= 1:5 bar wheras the exit pressure is p

e

= 1:374

bar. Due to the mass conservation equation, the 
ow Reynolds number R

m

= �

m

u

m

�=�

based on the bulk density �

m

and the bulk velocity u

m

varies linearly versus the axial dis-

tance of the channel so that it can be computed as R

m

= mx

1

=�. It ranges from zero to the

approximately value 9 x 10

4

. The injection Reynolds number is close to 1600. Experiments

have been carried out by Avalon.

14

Di�erent boundary conditions are applied in the computational domain. For the imperme-

able walls, no slip on velocity and constant temperature are required. Zero turbulent kinetic

energy and the wall dissipation rate value �

w

= 2�(@

p

k=@x

n

)

2

are speci�ed. For the per-

meable wall, the in
ow boundary condition requires a constant mass 
ow rate at the same

temperature. Experimental investigations

14, 26

of injected air from porous plate indicate that

some stationary velocity 
uctuations appear in the 
ow and that the disturbance amplitude

increases with increasing injection velocity. Due to this situation, the turbulence 
uctuations

at the porous surface can be related to the mean injected velocity by means of a coe�cient

de�ned as �

s

= (

]

u

00

2

u

00

2

=u

2

s

)

1=2

to be parametrically investigated. Other correlations such as

]

u

00

1

u

00

1

or

]

u

00

3

u

00

3

are smaller than the normal velocity 
uctuations

]

u

00

2

u

00

2

of the injected 
ow.

In this work, several simulations are performed for investigating the in
uence of turbulence

in injected 
uid, �

s

= 0:1, 0:2, 0:3, 0:4 and 0:5. For injection of low turbulence intensity,

the reasonable wall dissipation �

w

is also imposed at the porous surface. An other point

to emphazise concerns the pressure 
uctuations. Considering that the permeable wall does

not re
ect the pressure 
uctuations, the term �

w

ij

of equation (15) is reduced to zero in the

normal direction to the permeable wall. The slow and rapid pressure-strain correlation terms

�

1

ij

and �

2

ij

of equations (11) and (12) have not be modi�ed. The reason is that the functions

c

1

and c

2

in that modeled terms are dependant of the 
ow turbulent variables, such as the

anisotropy tensor a

ij

or the Reynolds number R

t

, and are automatically modi�ed by the

nature of the 
ow. No more modi�cations are necessary because the local e�ects of 
ow�eld

anisotropy near wall are incorporated in the modeled term

11

�

ij

�

2

3

����

ij

.

Figure 7 (a) shows the streamlines and the mean velocities of the 
ow�eld. Strong e�ects

of the streamlines curvature are observed near the porous wall due to the 
uid injection.

The velocities increase rapidly in the boundary layer generated by the rigid wall. Figure 7

(b) illustrates the Mach number contours of the channel 
ow. High resolution of the steady

state computational 
ow�eld can be observed through the regular behavior of the contour

lines. The Mach number ranges from zero in the head-end of the channel to approximately

0.33 in the exit section.
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Several simulations have been performed to investigate the in
uence of the turbulence

injection. As it could be expected, the turbulence transition is a�ected by the pseudo-

turbulence injected through the porous wall. Figures 7 (c),(d) show the contours of the

turbulent Reynolds number R

t

= k

2

=�� for di�erent values of the injection parameter. The

turbulence is �rst developed in the impermeable wall region and afterwise in the permeable

wall region. Increasing of pseudo-turbulence intensity can anticipate the 
ow transition near

the permeable wall but has no e�ect on the 
ow in the impermeable wall region. Figure 8

(a) shows the evolution of the Reynolds number R

�

= u

�

�=2� based on the averaged friction

velocity u

�

versus the longitudinal distance of the channel. The averaged friction velocity is

de�ned as u

�

=

p

1

2

(u

2

�w

+ u

2

�m

) where u

�w

and u

�m

are the friction velocities computed on

the impermeable and permeable walls, respectively. The rapid rise of the Reynolds number

which occurs in the �rst part of the channel at 0.2 m corresponds to the 
ow transition near

the impermeable wall region. Figure 8 (b) shows the evolutions of the integral turbulent

coe�cient

� =

c

�

��

Z

�

0

��k

2

�

dx

2

(26)

for di�erent values of the injection paramater �

s

. The rises of the coe�cient � �gure out the

transition locations of the turbulent 
ow. It can be noticed that the low initial turbulence

injection for �

s

= 0:1 is too small to triger the transition regime. It appears that the 
ow

turbulence intensity remains insensitive to the injected turbulence level when such level

is large. Figure 9 (a) shows the dimensionless mean velocity pro�les normalized by the

bulk velocity �u

1

=u

m

in global coordinates x

2

=� for �

s

= 0:2. The general shapes of the

pro�les present a good agreement with experimental data. The 
atness of the curves is

attributed to the turbulent e�ects which increase when moving to the exit section of the

channel. Figures 9 (b),(c),(d) show the evolutions of the streamwise, normal and cross

turbulent velocity 
uctuations normalized by the bulk velocity, (

]

u

00

1

u

00

1

)

1=2

=u

m

, (

]

u

00

2

u

00

2

)

1=2

=u

m

,

(

]

u

00

1

u

00

2

)=u

2

m

, for �

s

= 0:2 in di�erent sections of the channel located at x

1

= 22 cm, 40 cm

and 57 cm. In general way, it can be observed that the levels of the Reynolds stresses of

the 
ow are fairly reproduced by the RSM model although that a minor discrepancie with

the experimental data appears for the last section. The disagreement near the impermeable

side must be attributed to the experimental data which are altered by the hot wire probe

which is introduced through the impermeable wall. Figures 10 (a), (b) show the normal

velocity 
uctuations (

]

u

00

2

u

00

2

)

1=2

=u

m

, in di�erent cross sections for the RSM and the k � �

model of Myong and Kasagi.

27

The k� � model overpredicts the turbulent stresses by about

300 %.
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Conclusion

Numerical 
ow �eld simulations for the non-rotating fully developed channel 
ow, the

rotating channel 
ows and the channel 
ows with wall injection have been performed using

a Reynolds stress model. Comprehensive comparisons with DNS data or experimental data

for each encountered con�guration have been presented. It has been demonstrated that the

model which has been extended for compressible 
ows and modi�ed for system rotation and

wall injection predicts accurately the 
ows. For rotating channel 
ows, the RSM model

yields asymmetric mean velocity and turbulent stresses in very good agreement with the

DNS data. For the channel 
ow with 
uid injection through a permeable wall, di�erent


ow regimes from laminar to turbulent as well as the transition of the mean velocity pro�le,

have been reproduced in accordance with the experimental data. Because of the presence

of permeable and impermeable walls, the development of turbulence occurs at two di�erent

locations in the channel. E�ects of pseudo-turbulence in injected 
uid through the porous

surface have also been investigated.
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List of Figure Captions

Figure 1: Schematic of fully-developed turbulent channel 
ow in a rotating frame.

Figure 2: (a) Mean velocity pro�le �u

1

=u

�

in logarithmic coordinates; �: DNS; solid-

line: RSM. (b)Root-mean square velocity 
uctuations normalized by the wall shear ve-

locity in global coordinates; Symbols: DNS data; lines: RSM; (
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1
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1

)
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=u

�

: �, solid-line;

(
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)

1=2
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�

: C, dashed-line; (

g

u

00

3

u

00

3

)

1=2

=u

�

: B, dotted-line.

Figure 3: (a),(b) Mean velocity pro�le �u

1

=u

m

in global coordinates; �: DNS; solid-line:

RSM. (c),(d) Root-mean square velocity 
uctuations normalized by the bulk velocity; Sym-

bols: DNS data; lines: RSM; (

g

u

00

1

u

00

1

)

1=2

=u

m

: �, solid-line; (

g

u

00

2

u

00

2

)

1=2

=u

m

: C, dashed-line;

(

g

u

00

3

u

00

3

)

1=2

=u

m

: B, dotted-line. (e),(f) Turbulent Reynolds shear stress normalized by the

bulk velocity in global coordinates

g

u

00

1

u

00

2

=u

2

m

; �: DNS; solid-line: RSM.

Figure 4: Variation with the rotation number R

ot

= 
�=u

m

of the normalized cyclonic

and anticyclonic friction velocities. Solid-line,C,B: DNS results from Kristo�ersen et al.;

2

dotted-line,M,O: DNS results from Lamballais et al.;

3

dashed-line,2,�: present RSM results.

Figure 5: Solution trajectories in fully developed rotating channel 
ow projected onto the

second-invariant/third-invariant plane.

Figure 6: Schematic of channel 
ow with 
uid injection.

Figure 7: (a)Streamlines and mean 
ow velocity �eld; �

s

= 0:2. (b) Mach number contours;

� = 0:01; �

s

= 0:2. (c),(d) Contours of turbulent Reynolds number R

t

= k

2

=��; � = 110;

(c): �

s

= 0:2; 0 < R

t

< 4000. (d): �

s

= 0:5; 0 < R

t

< 4200.

Figure 8: Axial variations of turbulent coe�cients for di�erent values of the injection para-

mater �

s

. (a) Reynolds number R

�

; (b) coe�cient �. Dot-dashed-line: �

s

= 0:1; dotted-line:

�

s

= 0:2; dashed-line: �

s

= 0:3; long-dashed-line: �

s

= 0:4; solid-line: �

s

= 0:5.

Figure 9: (a) Mean dimensionless velocity pro�les. (b) Root-mean square velocity 
uc-

tuations normalized by the bulk velocity (

g

u

00

1

u

00

1

)

1=2

=u

m

. (c) (

g

u

00

2

u

00

2

)

1=2

=u

m

. (d)

g

u

00

1

u

00

2

=u

2

m

.

�

s

= 0:2. Symbols: experimental data; lines: RSM. x

1

= 22 cm: �, dotted-line; 40 cm: +,

dashed-line; 57 cm: �, solid-line.

Figure 10:Root-mean square velocity 
uctuations normalized by the bulk velocity (

g

u

00

2

u

00

2

)

1=2

=u

m

.

�

s

= 0:2. Symbols: experimental data; solid-line: RSM; dashed-line: k � �. (a) 35 cm: �;

(b) 45 cm: 2
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