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Abstract

Simulations of channel flows with effects of spanwise rotation and wall injection are
performed using a Reynolds stress model. In this work, the turbulent model is extended
for compressible flows and modified for rotation and permeable walls with fluid injection.
Comparisons with direct numerical simulations or experimental data are discussed in details
for each simulation. For rotating channel flows, the second-order turbulence model yields
an asymmetric mean velocity profile as well as turbulent stresses quite close to DNS data.
Effects of spanwise rotation near the cyclonic and anticyclonic walls are well observed. For
the channel flow with fluid injection through a porous wall, different flows development from
laminar to turbulent regime are reproduced. The Reynolds stress model predicts the mean
velocity profiles, the transition process and the turbulent stresses in good agreement with

experimental data. Effects of turbulence in injected fluid are also investigated.

Introduction

FOR engineering applications, calculations of turbulent flows are generally performed
with a first order closure turbulence model based on two transport equations. However,
standard two-equation models using the Boussinesq hypothesis have been incapable of ac-
curately predicting flows where the normal Reynolds stresses play an important role, e.g..
in flows with strong effects of streamline curvature, system rotation, wall injection or ad-
verse pressure gradient. In turbomachinery, the system rotation affects both mean motion,
turbulence intensity and turbulence structure. For instance, due to the Coriolis force, a
channel flow subjected to a spanwiswe rotation becomes asymmetric with a turbulence ac-

tivity which is much reduced to the cyclonic side compared with the anticyclonic side, as
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observed experimentally by Johnson et al.' and also reproduced by direct numerical simu-

2 as well as by Lamballais et al.,®> more recently. This

lations by Kristoffersen and Anderson
kind of rotating flow is important for turbomachinery industry. Indeed, in order to improve
the performance of jet aircrafts, it is necessary to obtain an accurate description of the flow
structure in the different parts of the engine. In solid rocket propulsion,* the mass transfer
which results from the propellant combustion modifies the shear stress distribution across
the flow in comparison with the shear stress of wall-bounded flow. The internal flow in
solid rocket motor, which is produced by mass injection, plays an important role in ballistics
prediction. Modeling such flows is a difficult task because different regimes from laminar to

turbulent can be observed in these motor chambers due to the transition behavior of the

mean axial velocity.

The turbulence model used for the closure of the Reynolds averaged Navier-Stokes equa-
tions must be able to predict accurately such complex flows. In this aim, Reynolds stress
models have been proposed in the past decade. Contrary to first order turbulence models,
the Coriolis terms associated with system rotation are included in the second-moment clo-
sures. Exact production terms appear as sources (or sinks) in the transport equations for the
individual Reynolds stress components. In the RSM formulation, the pressure-strain corre-
lation term forms a pivotal role by incorporating history and non-local effects of the flow.
This term has been modeled by assuming homogeneous flows that are near equilibrium?®
and recent developments in this direction have been made.® For calculations of complex
wall-bounded turbulent flows, a wall reflection term has been incorporated in the model for
reproducing the logarithmic region of the turbulent boundary layer.” In the usual approach,
the modeled wall reflection term requires a variety of ad hoc wall damping functions which
depend on the distance normal to the wall.®? Durbin!® has recently proposed an alternative
route of a relaxation approach in which an elliptic equation is introduced and interpreted as
an approximation of the wall effects. For simulating complex flows, it appears that Reynolds
stress models which take into account these recent developments, are a good compromise
between large eddy simulations, that require very large computing time, and first order clo-

sure models, which are not able to predict flows accurately.

In this work, the model developed by Launder and Shimal!! has been selected because it
has predicted flows fairly despite that its formulation is simpler than those of other models.!?
It contains only a few empirical terms and thus is a good candidate to handle a large variety of
flows. This model is extended for compressible flows, adapted for rotation and for permeable

walls with fluid injection. Comparison with data of direct numerical simulations for non-
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rotating!® and rotating® channel flows, and with experimental data for channel flows with

1 are discussed in details. In addition, the Lumley representation of the second

wall injection,
and third invariant of the Reynolds stress anisotropy tensor is considered for analyzing the

solutions trajectories.

Governing equations

Turbulent flow of a viscous fluid is considered. As in the usual treatments of turbulence,
the flow variable ¢ is decomposed into ensemble Reynolds mean and fluctuating parts as
€ = €4 €. In the present case, the Favre-averaged is used for compressible fluid so that the
variable ¢ can be written as &€ = £ + ¢ with the particular properties £” =0 and pE" =0
where p is the mass density. These relations imply that £ = p€/p. The Reynolds average
of the Navier-Stokes equations produces in Favre variables the following forms of the mass,

momentum and energy equations in a rotation frame of reference (2 :

T
E‘Fa—%(ﬂuy) =0 (1)
J . 0 o ai” B
57 (Pui) + 6—:1;](’0 U ) Oz, 2668 U (2)
J - J o~ J .-
a(ﬂ )+ 6xj( Eaj) = 9, (Sijai)
— = 94
+6—xj <02Jui —3p ukukuj> ~ Ou; (3)

where w;, E, ¥;;, 045, qi, i are, respectively, the velocity vector, the total energy, the total
stress tensor, the viscous stress tensor, the total heat flux vector and the permutation tensor.
The mean stress tensor Y;; is composed by the mean modified pressure which includes the
centrifugal force potential p* = p — %,6|Q X x|?, the mean viscous stress d;; and the turbulent

stress p7;; as follows :
Yij = —p o+ i — pi (4)

In this expression, the tensor o;; takes the usual form :

_ _(Ou;  Ou; 2 Ouy
= — _52
7ii a (6:1;] + 6:1%) 3”6:1% ! (5)
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and the Favre-averaged Reynolds stress tensor is :
Ti; = U u; (6)

where the quantity p is the molecular viscosity. The mean heat flux ¢; is composed by the
laminar and turbulent flux contributions :
8T

i = g+ ™

where T', h and k are the temperature, the specific enthalpy and the thermal conductiv-
ity, respectively. Closure of the mean flow equations is necessary for the turbulent stress

P W the molecular diffusion o;;u!, the turbulent transport of the turbulent kinetic energy

puyuiuy, and the turbulent heat ﬂuX ph'"u ”

Turbulence model

The Favre-averaged correlation tensor 7;; = u}u/ is computed by means of Reynolds stress

model. In this study, the model of Launder and Shlma11 has been considered and extended
to compressible flows using the Favre-averaged. The turbulent model has been also modified
to simulate rotating flows. For this, the Coriolis force has been incorporated in the Reynolds
stress transport equation and the pressure-strain correlation has been developed in a form-

invariant under Galilean transformation. This has consisted in replacing the mean vorticity

_ 1 [/ du; 6%
P (axj N 8:1/'2) (®)

which appears in the modeled pressure-strain term, by the absolute mean vorticity tensor

tensor w;; of usual form,

defined as mj = w;j + €,;i ), where () is the angular velocity vector. So that the pressure-

strain term takes the following form :

(I)ij —clﬁcazj —I-%Cgﬁkgij

Cgﬁk <aik»§jk + ajkgik _gamnsmn&])
capk (ainWie + aj,Wir) (9)

+ +
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where k is the turbulent kinetic energy, a;; = (7i; — 2k6;;)/k is the anisotropic tensor, Si; is

the mean rate of strain defined as :

& 1/ Ou; 6%
=3 (axj + 8:1/'2) (10)

¢ is the dissipation rate and ¢; and ¢, are functions dependant of the second and third

invariants Ay = a;;a;:, As = a;jajpar;. Then, equation (9) is rewritten with respect to the

Reynolds stress 7;; and the mean velocity gradient du;/dx; in order to obtain a more compact

form for the slow and rapid contributions, CI)}j, CI)?j of the pressure-strain correlations!'® such
as ®;; = ®j; + ®7.. Expressions of these quantities are the following :
CI)le = —c1peag; (11)
(1)22] = —C2 <P2] —I-%PZ]]% —%Pkkéw) (12)
where P;; is the production by the mean flow :
ou; 0,
P =—prjp—r — prip—o 13
J kaal’k pT]k al’k ( )
and Pff is the production generated by the rotation :
P = =250 (¢jphThi + €ipnThi) (14)

Due to these considerations, the modeled transport equation of the Reynolds stress tensor

takes the form as follows :

Jd., g
gr P Tii) T g, (P = Py + P
2
—3Pe0is + By + B + O+ i (15)

where :

e
w whP
;= ™ (Trngni0;j —2TEmgng —2meingn;) fu

+ey (P manidiy — 3@ ngn; —$@%ngni) fu (16)
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i7k = sP— 1
Jiik s (Maxk—l—c/)cm@x;) (17)

The terms on the right-hand side of equation (15) are identified as production by the mean
flow, dissipation rate, slow redistribution, rapid redistribution, wall reflection and diffusion.
The wall reflection term has been introduced in the model in order to take into account
the pressure fluctuations from a rigid wall. The functions ¢;, ¢3, ¢, ¢y are empirically
calibrated as : ¢y = 1 4+ 2.58AA;/4(1 —exp(—(0.0067R;)?)), c; = 0.75AY2 ¢ = —2¢) +1.67,
¢y = max(2ez —1,0)/ca where A = 1 — 9/8( Ay — As) is the flatness coefficient parameter
and R, = k?/ve is the turbulent Reynolds number. In expression (16), f, = O.4k%/exn
is a function dependant of the normal distance to the wall x, and n is the normal to the
wall. The coefficiant ¢, takes the value of 0.22. The dissipation rate e of expression (15) is

computed by means of the following transport equation which takes the form as :

I R A
ot pe Ox; pUie) = Ox; Maxj cepeT]laxl
ot 3
—(ca + Y1+ ¥2) ﬁ;ma—zz - Cezﬁ% (18)

with ¢ = 1.45, ¢ = 1.9, ¢. = 0.18 where

i VE)
6:6—21/<axn> (19)

The function ¢ in equation (18) is defined as :

Py = 1.5A (2];“6 - 1) (20)
and has the effect to reduce the turbulence length scale. Relative to the model of Shima,'®
the function t; has been modified to simulate flows with fluid injection through a porous
wall. The reason is that this function can reach too large values, in comparison with the
standard value c.;, when flows are far from equilibrium. Due to these considerations, the
function v has been bounded, |¢1] < 0.125 ¢.1. This has the effects to prevent too early lam-
inarization of flows. On the other hand, the function 5 has been reduced to zero because of

its empirical character which alters the rationale formulation of the dissipation rate equation.

Regarding to the molecular diffusion and the turbulent transport terms, a gradient hy-
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pothesis has been considered :

1 —— - k ok
Uiju;'/ —=p u/k/u’k’u;’ = (/,L + CS,OZT]‘k> 87 (21)
J

For the heat transfer, the turbulent flux is computed by means of the £ and ¢ variables :

_cquC_Z,@T
¢ P, Ox

—
"yl —
Rl =

(22)

where ¢, and P,, are the specific heat at constant pressure and the turbulent Prandtl number,

respectively. The coefficiant ¢, takes the standard value 0.09.

Realizability conditions for the RSM model

The Reynolds stress tensor 7;; computed by the modeled transport equation (15) must
satisfy the realizability conditions which imply non-negative values of the three principal
invariants!” I; that appear in the characteristic polynomial P(A) = A* — 1A% + LA — I3 of
the matrix formed by the components 7;;. It is easier to examine the question of realizability
in a coordinate system aligned with the principal axes of the Reynolds stress tensor. For
practical reasons, it is also more convenient to analyze the weak form of realizability!”
which requires that when a principal Reynolds stress componant vanishes, its time derivative
must be positive. This ensures that negative energy component cannot occur when this
constraint is satisfied. Although the basis of the principal axes of the Reynolds stress tensor
is rotating in time, Speziale et al.'® have shown that the first derivative constraint takes the
same formulation in the principal axes. So that the modeled transport equation (15) of the

turbulent stress componant 7(,4) can be written as :

_dT(qa) R L € ,
Py = Plaoay + Plaa)y —3p€ — ClPE(T(aa) —3k)
_CZ(P(ozoz) —I_%P(Izoz) _%POZOZ) (23)

where the Einstein summation convention is suspended for indices which lies within paren-
theses. The diffusion term as well as the reflection term are not considered. When the
componant stress T(,,) vanishes, it can be shown that the production terms Py and P(Iza)

are zero so that the weak realisability conditions implies :

POZOZ
2pe

(8] Z 11— Co (24)
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Due to the expressions of the coefficients ¢; and ¢z, equation (24) is verified when the
production term F,, of the turbulent kinetic energy is positive. This corresponds to the
usual case of flow physics and ensures therefore the satisfaction of the weak realizability

constraint.

Non-rotating channel flow

Numerical simulation of fully developed turbulent channel flow is compared with data of
direct numerical simulation'® for the Reynolds number R, = u,d/2v = 395, based on the
averaged friction velocity u, and the channel width §/2, (see figure 1 with @ = 0). Other
useful definitions of the Reynolds number include those based on the mean centerline velocity
R. = u.6/v and the bulk velocity R,, = u,,6/v. In the present case, RSM results can be
compared with DNS data computed for incompressible flow because the Mach number takes
a low value. The closure equation (22) hasn’t influenced the numerical results due to the fact
that the temperature is almost uniform. Figure 2 (a) describes the dimensionless velocity
profile u;/u, in wall coordinates :1;;' = x9u, /v in order to illustrate the logarithmic region.
The velocity follows very well the DNS data but the logarithmic profile is not completely
resolved in the center of the channel. The ratio of the centerline velocity to the bulk velocity
takes the value 1.13, quite close to DNS result, 1.15. Excellent agreement with Dean’s
correlation of u./u,, = 1.28R 0% = 1.15 is also obtained. The value of the skin friction
coefficient computed by Dean’s suggested correlation ¢; = 0.073R-%** = 6.80 agrees well the
DNS result, 6.70. Figures 2 (b) shows the axial, normal and spanwise turbulence intensities
normalized by the wall-shear velocity (m)l/z/uT (i=1,2,3), versus the global coordinates
z3/d. The Reynolds stress model provides good agreement with the DNS data. In particular,

the peak of the streamwise turbulence intensity in the wall region is well captured.

Rotating channel flows

Numerical simulations of rotating channel flows are performed for the Reynolds number
R, =162, based on the friction velocity u, which is defined as u, = \/m where v,
and u,, are respectively the friction velocities on the cyclonic and anticyclonic walls. The
Reynolds number based on the bulk velocity takes the value R,, = 5000. For this application,
different values of the Rossby number R, = 3u,,/§{) are considered, R, = 18 and R, = 6,
respectively. These values correspond to moderate and high rotation regimes. The vector
rotation considered is along the spanwise direction x3 as indicated in figure 1. Figures
3 (a), (b) show the mean dimensionless velocity profiles normalized by the bulk velocity
u1/u,, versus the global coordinates for both rotation regimes. These figures illustrate the

asymmetric character of the flow because of the rotation effects. For both rotation regimes,
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an excellent agreement between the RSM simulations and DNS data of Lamballais et al.®
is observed. For these rotating flows, it is of interest to note that the mean component
of the velocity is only affected by the Coriolis term through the turbulent shear stress 75
which appears in the momentum equation (2). For k—e model with a Boussinesq hypothesis,
it 1s a simple matter to show that the mean velocity profile remains perfectly symmetric.
For both simulations performed at R, = 18 and R, = 6, one can notice that the mean
velocity profile exhibits a linear region of constant shear stress. The computation indicates
that the slope of the mean velocity gradient du,/dx, is approximately equal to 2{)3, and
corresponds to a nearly-zero mean spanwise absolute vorticity vector, i.e., Wy = @3+205 ~ 0
where w; = €;;,0uy/0x; represents the vorticity vector, as already noticed experimentally by

Johnston et al.! By considering the Richardson number defined as :

—93(512 - 93)
St

R, = (25)
it can be mentioned that this particular portion of the profile represents a region of neutral
stability R; ~ 0. On the cyclonic side, the flow is stabilized since the Richardson num-
ber R; is positive wheras negative values on the anticyclonic wall imply that the rotation
destabilizes the flow.'® Figures 3 (c),(d) show the evolutions of the axial, normal and span-
wise turbulence intensities normalized by the bulk velocity (u! ”)1/2/u (i=1,2,3) versus the
global coordinates /8 for both rotation regimes. The model predicts Reynolds turbulent
stresses in excellent agreement with DNS data® for the moderate rotation regime R, = 18.
For the higher rotation R, = 6, a very good agreement is also observed with the DNS data
although that the turbulence intensity is slightly overpredicted in the cyclonic wall region.
The distribution of the turbulence fluctuations differs appreciably in the non-rotating and
rotating cases. When the rotation rate is increased, the turbulence activity is much more re-
duced for the cyclonic wall than for the anticyclonic wall. This suggests that the turbulence
on the cyclonic side may originate from interaction with turbulent anticyclonic side. Due
to the rotation, the flow anisotropy is modified. Near the anticyclonic side, the intensity of
the streamwise velocity fluctuations (u’l’u’l’)l/z/um decreases with the rotation rate wheras
the intensities of the normal and spanwise velocity fluctuations (ugug)l/z/um, (ufu ”)1/2/um
are increased. On the other hand, it can be observed a monotonic decrease of the root-mean
square velocity components (u! ”)1/2/u (i=1,2,3) near the cyclonic channel side. Figures
3 (e),(f) show the Reynolds shear stress normalized by the bulk velocity u” 4 Ju? in global
coordinates for both Rossby numbers. The asymmetric character of the flow is well illus-
trated. Figure 4 describes the evolution of the normalized friction velocities on the cyclonic

and anticyclonic walls u, /u, versus the number rotation R,; = Q6 /u,, = 3/R,. The quantity
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u, 1s the friction velocity in the absence of rotation. The present results produced by the
Reynolds stress model appear to be quite close to DNS data of Kristoffersen and Andersson?
but slightly overpredicted near the anticyclonic wall in comparison with data of Lamballais
et al.> Figure 5 shows the solution trajectories projected onto the plane formed by the sec-
ond invariant and third invariant for the DNS simulation and RSM prediction. The solution
trajectories are computed along a straight line normal to the walls in a cross section of
the channel. It can be seen that the trajectories produced by the model remain inside the
curvilinear triangle which is the realizable region, and agree well with the DNS trajectories.
Due to rotation, the trajectories are not symmetric when moving from the anticyclonic wall

toward the cyclonic wall.

Channel flows with wall injection

The objective is to investigate the flow in a channel with appreciable fluid injection
through a permeable wall as indicated in figure 6. The wall injection is encountered in the
combustion induced flowfields in solid propellant rocket motors (SRM). It is known that the
flow in a channel with wall injection evolves significantly with respect to the distance from
the front wall. Different regimes of flow are observed depending on the injection Reynolds
number R, = psusd/u, defined with the injection density p,, the velocity u,, the dynamics
viscosity p, at the porous surface and with the height ¢ of the planar channel. In the first
regime, the velocity field is developed in accordance with the laminar theory. The second
flow regime is characterized by the development of turbulence and is affected by the tran-
sition process of the mean axial velocity when a critical turbulence threshold is attained.
Simulations of channel flows with wall injection using a first order closure model have pro-
vided different predictions of the transition process and overpredicted turbulence levels by
about 300% and 200% in the post-transition of the flow.?*?? Simulations using a second
order closure model with an algebraic relation for the turbulence macro-length scale were
performed by Beddini.?® Experimental data of Yamada et al.?* were overpredicted by about

1.25 was obtained by gener-

200 % but a reasonable agreement with the data of Dunlap et a
ating pseudo-turbulence at the porous surface. These previous numerical results show that
channel flows with wall injection present physics phenomena that are difficult to reproduce
by simulations. A recent specific experimental set up has been realized at ONERA for in-
vestigating the characterictics of injection driven flows. The planar experimental facility is
composed of a parallelepipedic channel bounded by a lower porous plate. Values of the duct
length and the channel height are respectively L = 58.1 ¢cm and 6 = 1.03 cm. Cold air
at 303 K is injected with a uniform mass flow rate m = 2.619 Kg/m?*s through a porous

material of porosities, 8 yum or 18 um. The injection velocities are fixed by the local pressure
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in the channel. In accordance with the operating conditions of the experimental set up, the
pressure at the head-end of the channel is p, = 1.5 bar wheras the exit pressure is p, = 1.374
bar. Due to the mass conservation equation, the flow Reynolds number R,, = p,u,,é/u
based on the bulk density p,, and the bulk velocity w,, varies linearly versus the axial dis-
tance of the channel so that it can be computed as R,, = max/u. It ranges from zero to the
approximately value 9 x 10*. The injection Reynolds number is close to 1600. Experiments
have been carried out by Avalon.

Different boundary conditions are applied in the computational domain. For the imperme-
able walls, no slip on velocity and constant temperature are required. Zero turbulent kinetic
energy and the wall dissipation rate value €, = ZV(a\/E/axn)z are specified. For the per-
meable wall, the inflow boundary condition requires a constant mass flow rate at the same

14,26 6f injected air from porous plate indicate that

temperature. Experimental investigations
some stationary velocity fluctuations appear in the flow and that the disturbance amplitude
increases with increasing injection velocity. Due to this situation, the turbulence fluctuations
at the porous surface can be related to the mean injected velocity by means of a coefficient

defined as o, = (m/ug)l/z to be parametrically investigated. Other correlations such as

ufuy or ufuf are smaller than the normal velocity fluctuations ufuf of the injected flow.

In this work, several simulations are performed for investigating the influence of turbulence
in injected fluid, o, = 0.1, 0.2, 0.3, 0.4 and 0.5. For injection of low turbulence intensity,
the reasonable wall dissipation ¢, is also imposed at the porous surface. An other point
to emphazise concerns the pressure fluctuations. Considering that the permeable wall does
not reflect the pressure fluctuations, the term @ of equation (15) is reduced to zero in the
normal direction to the permeable wall. The slow and rapid pressure-strain correlation terms
®}. and ®F; of equations (11) and (12) have not be modified. The reason is that the functions
¢1 and ¢, in that modeled terms are dependant of the flow turbulent variables, such as the
anisotropy tensor a;; or the Reynolds number F,, and are automatically modified by the
nature of the flow. No more modifications are necessary because the local effects of flowfield

anisotropy near wall are incorporated in the modeled term'* ®;; — %ﬁe&j.

Figure 7 (a) shows the streamlines and the mean velocities of the flowfield. Strong effects
of the streamlines curvature are observed near the porous wall due to the fluid injection.
The velocities increase rapidly in the boundary layer generated by the rigid wall. Figure 7
(b) illustrates the Mach number contours of the channel flow. High resolution of the steady
state computational flowfield can be observed through the regular behavior of the contour
lines. The Mach number ranges from zero in the head-end of the channel to approximately

0.33 in the exit section.
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Several simulations have been performed to investigate the influence of the turbulence
injection. As it could be expected, the turbulence transition is affected by the pseudo-
turbulence injected through the porous wall. Figures 7 (c),(d) show the contours of the
turbulent Reynolds number R; = k?*/ve for different values of the injection parameter. The
turbulence is first developed in the impermeable wall region and afterwise in the permeable
wall region. Increasing of pseudo-turbulence intensity can anticipate the flow transition near
the permeable wall but has no effect on the flow in the impermeable wall region. Figure 8
(a) shows the evolution of the Reynolds number R, = /21 based on the averaged friction
velocity w, versus the longitudinal distance of the channel. The averaged friction velocity is
defined as u, = \/m where w,,, and u,,, are the friction velocities computed on
the impermeable and permeable walls, respectively. The rapid rise of the Reynolds number
which occurs in the first part of the channel at 0.2 m corresponds to the flow transition near
the impermeable wall region. Figure 8 (b) shows the evolutions of the integral turbulent

coeflicient

/ P kzd@ (26)

for different values of the injection paramater o,. The rises of the coefficient « figure out the
transition locations of the turbulent flow. It can be noticed that the low initial turbulence
injection for o4 = 0.1 is too small to triger the transition regime. It appears that the flow
turbulence intensity remains insensitive to the injected turbulence level when such level
is large. Figure 9 (a) shows the dimensionless mean velocity profiles normalized by the
bulk velocity w;/u,, in global coordinates x5/ for o, = 0.2. The general shapes of the
profiles present a good agreement with experimental data. The flatness of the curves is
attributed to the turbulent effects which increase when moving to the exit section of the
channel. Figures 9 (b),(c),(d) show the evolutions of the streamwise, normal and cross
turbulent velocity fluctuations normalized by the bulk velocity, (u/”\/u’l’)l/z/um, (m)l/z/um,
(u/”\/u’z’)/um, for o, = 0.2 in different sections of the channel located at x; = 22 c¢m, 40 c¢m
and 57 cm. In general way, it can be observed that the levels of the Reynolds stresses of
the flow are fairly reproduced by the RSM model although that a minor discrepancie with
the experimental data appears for the last section. The disagreement near the impermeable
side must be attributed to the experimental data which are altered by the hot wire probe
which is introduced through the impermeable wall. Figures 10 (a), (b) show the normal
velocity fluctuations (u”ug)l/z/um, in different cross sections for the RSM and the & — ¢
model of Myong and Kasagi.?” The k — ¢ model overpredicts the turbulent stresses by about
300 %.
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Conclusion

Numerical flow field simulations for the non-rotating fully developed channel flow, the
rotating channel flows and the channel flows with wall injection have been performed using
a Reynolds stress model. Comprehensive comparisons with DNS data or experimental data
for each encountered configuration have been presented. It has been demonstrated that the
model which has been extended for compressible flows and modified for system rotation and
wall injection predicts accurately the flows. For rotating channel flows, the RSM model
yields asymmetric mean velocity and turbulent stresses in very good agreement with the
DNS data. For the channel flow with fluid injection through a permeable wall, different
flow regimes from laminar to turbulent as well as the transition of the mean velocity profile,
have been reproduced in accordance with the experimental data. Because of the presence
of permeable and impermeable walls, the development of turbulence occurs at two different
locations in the channel. Effects of pseudo-turbulence in injected fluid through the porous

surface have also been investigated.
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List of Figure Captions

Figure 1: Schematic of fully-developed turbulent channel flow in a rotating frame.

Figure 2: (a) Mean velocity profile u;/u, in logarithmic coordinates; A: DNS; solid-
line: RSM. (b)Root-mean square velocity fluctuations normalized by the wall shear ve-
locity in global coordinates; Symbols: DNS data; lines: RSM; (u”u’l’)l/z/uT: A, solid-line;
(u’z’ug)l/z/uT <, dashed-line; (ugug)l/z/uT >, dotted-line.

Figure 3: (a),(b) Mean velocity profile u;/u,, in global coordinates; A: DNS; solid-line:
RSM. (c¢),(d) Root-mean square velocity fluctuations normalized by the bulk velocity; Sym-
bols: DNS data; lines: RSM; (u”u’l’)l/z/um: A, solid-line; (ugug)l/z/um: <, dashed-line;
(ugug)l/z/um' >, dotted-line. (e), (f) Turbulent Reynolds shear stress normalized by the
bulk velocity in global coordinates u/uf /u?; A: DNS; solid-line: RSM.

Figure 4: Variation with the rotation number R,, = Q§/u,, of the normalized cyclonic
and anticyclonic friction velocities. Solid-line,<1,>>: DNS results from Kristoffersen et al.;?
dotted-line,A,V: DNS results from Lamballais et al.;®> dashed-line,d,(: present RSM results.

Figure 5: Solution trajectories in fully developed rotating channel flow projected onto the
second-invariant /third-invariant plane.

Figure 6: Schematic of channel flow with fluid injection.

Figure 7: (a)Streamlines and mean flow velocity field; o, = 0.2. (b) Mach number contours;
A = 0.01; o, = 0.2. (c),(d) Contours of turbulent Reynolds number R, = k?/ve; A = 110;
(¢): 05 =10.2; 0 < R; < 4000. (d): o5 =0.5; 0 < Ry < 4200.

Figure 8: Axial variations of turbulent coefficients for different values of the injection para-
mater 0. (a) Reynolds number R;; (b) coefficient a. Dot-dashed-line: oy = 0.1; dotted-line:
os = 0.2; dashed-line: o, = 0.3; long-dashed-line: o5 = 0.4; solid-line: o, = 0.5.

Figure 9: (a) Mean dimensionless velocity _profiles. (b) Root-mean square velocity fluc-
tuations normalized by the bulk velocity (u”u’l’)l/z/um. (c) (u”u’z’)l/z/u (d) u uz/u
os = 0.2. Symbols: experimental data; lines: RSM. z; = 22 cm: <, dotted-line; 40 em: +,
dashed-line; 57 cm: o, solid-line.

Figure 10:Root-mean square velocity fluctuations normalized by the bulk velocity (u’z’ug)l/z/um.

os = 0.2. Symbols: experimental data; solid-line: RSM; dashed-line: k —e. (a) 35 cm: >
(b) 45 cm: O
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