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Abstract

The partially integrated transport modeling (PITM) method viewed as a continuous approach of
hybrid RANS/LES with seamless coupling is first recalled. In the present work, the subfilter stress
model derived from the PITM method is considered and developed in a general formulation valid
for free flows as well as bounded flows. Numerical simulations of the well known fully turbulent
channel flows are first performed on coarse and medium grids for assessing the subfilter model
and for studying the sharing out of the energy when the filter width is changed. The practical
flow over a 2D periodic hills is then simulated on coarse and medium grids for illustrating the
performances of the subfilter stress model. As a result, it is found that the subfilter stress model
reproduces fairly well this complex flow governed by interacting turbulence mechanisms associated
with separation, recirculation, reattachment, acceleration and wall effects. Overall, it provides
velocity and turbulent stresses in good agreement with the reference data for both grids. The effects
of the grid refinement are also investigated in detail. The solution trajectories projected onto the
plane formed by the second and third invariants allow to analyze the realizability of the turbulent
stresses and to assess the flow anisotropy. Moreover, the simulation using the subfilter stress model
reveals the detail of the instantaneous flow structures. For comparison purposes, the channel flow
over 2D hills is also predicted using a statistical Reynolds stress model (RSM) developed in RANS
methodology. In contrast to the subfilter stress model used in LES methodology, it appears that the
RSM model provides inaccurate results, in spite of being one of the most advanced RANS model.
This failure seems to be attributed to the inability of RANS models to capture the large-scale
dynamics in the separated shear layer.

1 Introduction

The mathematical turbulence modeling methods such as Reynolds Averaged Navier-Stokes (RANS)
or Large Eddy Simulations (LES) methods [1] have been proposed independently from each other
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for simulating turbulent flows. Generally, advanced RANS models such as Reynolds Stress Models
(RSM) [2] appear well suited for tackling engineering flows encountered in aeronautical or space
applications [3, 4, 5, 6] whereas subgrid-scale models used in LES such as the dynamic model
[7] or the structure model [8] are rather considered for simulating academic flows with emphasis
on fundamental aspects and structural aspects. Although these methods are very useful, each of
them has its own specific field of application. If statistical RANS models can reproduce unsteady
flows governed by low frequencies, as for instance in applications to space launchers or solid rocket
motors where vortex shedding phenomena play an important role [9], they are generally not well
suited for simulating unsteady flows subjected to a large range of frequencies that can interact
with the turbulence time scales. On the other hand, large eddy simulations initially devoted to the
study of atmospheric flows [10] and fundamental flows are not accurate for simulating engineering
flows when they are performed on coarse grids. The main reason arises from the location of the
cutoff wave number which is placed in this case before the inertial range implying that a large part
of subgrid energy is modeled despite the fact that the modeling uses simple closure only valid for
fine grained turbulence. As mentioned by Spalart [11], it will not be possible in a near future to
simulate industrial applications requiring large computational domains like for instance an entire
aircraft, even with the rapid increase of super-computer power. The computational cost of such
flow simulations still remains not affordable. For these reasons, hybrid RANS/LES methods ca-
pable of reproducing a RANS-type behavior in the vicinity of a solid boundary and an LES-type
behavior far away from the wall boundary have been developed in the last decade [12, 13, 14].
Statistical and filtered equations can be written formally in the same form providing a conve-
nient framework [7]. They differ by the turbulence models or parametrization needed to close the
equations that allows the construction of composite methods. According to the literature, [6, 15]
hybrid methods can be classified into two categories, zonal and non-zonal methods. RANS/LES
zonal methods rely on two different models, a RANS model and a subgrid-scale model, which are
applied in different domains separated by a sharp or dynamic interface [16, 17, 18]. Noticeably,
the main shortcoming of these methods lies in the connection interface between the RANS and
LES regions. The interface being empirically set inside the computational domain, the turbulence
closure changes from one model to another one without continuity when crossing the interface.
An internal forcing produced by artificial instantaneous random fluctuations is then necessary for
restoring continuity at the crossflow between these domains in aiming to obtain correct velocity and
stress profiles in the boundary layer [19, 20, 21]. The non-zonal methods assume that the governing
set of equations is smoothly transitioning from a RANS behavior to an LES behavior, based on
criteria updated during the computation. Among non-zonal methods, one can notice for instance
blending turbulence models using a weighted sum of a RANS model and LES model by means of
a blending factor [22]. But the terminology employed for classifying hybrid RANS/LES methods
among zonal and non-zonal methods may be ambiguous since both use different models in different
zones. Other authors [12] prefer to identify segregated modeling as a form of zonal methods and
unified modeling corresponding to the counterpart to segregated modeling as non-zonal methods.
Among these hybrid RANS/LES methods, the Detached Eddy Simulation (DES) [23, 11] where
the model is switching from a RANS behavior to an LES behavior, depending on a criteria based
on the turbulent length-scale, is one of the most popular models. However, although of practical
use for aeronautical applications, DES is very sensitive to the interface position between the RANS
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and LES regions and is also dependent on the grid-size. In particular, the gray area where the
model varies from URANS to LES may be problematic unless the separation is abrupt and fixed
by the geometry [11]. Note that a new version of the detached-simulation, referred to as DDES, for
Delayed DES, resistant to ambiguous grid density, has been developed recently in this framework
[24]. Usually, hybrid RANS/LES methods are inspired by RANS modeling that constitutes a con-
venient framework [25]. But other models can be devised by different routes rather than starting
from existing RANS models. One can mention for instance the RG VLES model [26] relying upon
renormalization group (RG) calculations [27]. The hybrid model proposed by Delanghe et al. [26]
founded on RG modeling is a one-equation model based on the dissipation-rate equation unlike
most one-equation model that are using the turbulent energy equation.

Recently, the Partially Integrated Transport Modeling (PITM) method has been developed by
Chaouat and Schiestel [28] and by Schiestel and Dejoan [29] to overcome the difficulties raised by
standard RANS/LES methods. This present PITM method gains major interest on the fundamen-
tal point of view because it allows some unifying formalism that conciliates both RANS and LES
approaches [30]. This method is based on the spectral Fourier transform of the dynamic equation
of the two-point fluctuating velocity correlations with an extension to the case of nonhomogeneous
turbulence. The resulting equation describes the evolution of the spectral velocity correlation ten-
sor in wave vector space [28, 30]. Then, partial integrations of the spectral equation give rise to
subfilter turbulence models. This method is general and can be applied to almost all statistical
models to derive their hybrid LES counterparts corresponding to subfilter models that can be used
for performing continuous hybrid non-zonal RANS/LES simulations with seamless coupling on rel-
atively coarse grids. Among these subfilter models derived by the PITM method, one can mention
for instance subfilter viscosity models [29, 31] and subfilter stress models [28, 32, 33, 34] transposed
from k− ε, k− ε− ζ models and Reynolds stress models, respectively. Subfilter scale stress models
[28, 32, 34] that discard the concept of turbulent viscosity are the most elaborate models. Indeed,
due to the presence of the subfilter scale pressure-strain correlation term in the transport equation,
they provide a more realistic description of the flow anisotropy than eddy viscosity models. They
are able to take into account precisely the turbulent processes of production, transfer, pressure re-
distribution effects, and dissipation. Subfilter models devised from the PITM method appreciably
differ from standard non-zonal hybrid RANS/LES models based on RANS and LES models em-
pirically matched by blending functions, because they are based on a continuous formulation. As
a result, the PITM solution evolving in time and space is then governed by a dynamical parameter
ηc involving the ratio of the turbulent length-scale to the grid-size. The turbulent quantities are
calculated as the sum of the subfilter and resolved contributions. Note that the PANS method
[35] also appears in this line of thought, and the final equations have great similarities with the
PITM equations, despite a completely different argumentation based on practical considerations.
The PANS method however imposes an arbitrary fixed ratio for the subgrid energy to the total
energy. This method has been applied to devise only subgrid viscosity models.

The paper first presents briefly the PITM method and describes numerical flow simulations
using a subfilter stress model developed in a general formulation for free flows as well as bounded
flows [32, 36]. The fully developed turbulent channel flow is first simulated on two different grids
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for checking the grid independence of the solutions as well as the consistency of the subfilter stress
model when the filter width is changed. Then, the periodic flow over a 2D hill is simulated on
coarse and medium grids by using both the subfilter stress model and the statistical RSM model for
comparison purposes. The effects of the grid refinement are also investigated in detail. This test
case of the separated flow in a channel with streamwise periodic constrictions is of central interest
because of the turbulence mechanisms associated with separation, recirculation, reattachment,
acceleration and wall flow effects that are difficult to accurately predict. This part constitutes the
main issue of the present work.

2 The filtering process and transport equation subfil-

ter model

2.1 The governing equations

Turbulent flow of a viscous incompressible fluid is considered. In large eddy simulations, the flow
variable φ is decomposed into a large scale (or resolved) part φ̄ and a subfilter-scale fluctuating (or
modeled) part φ′. The large scale component is defined by the filter function G∆ as

Φ̄(x) =

∫ ∫ ∫
D
G∆(x,x′) Φ(x′) d3x′ (1)

where ∆ is the filter width. Applying the filtering operation to the instantaneous Navier-Stokes
momentum equation yields the filtered momentum equation

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂(τij)sfs
∂xj

(2)

where ui, p, (τij)sfs, are the velocity vector, the pressure, and the subfilter-scale stress tensor,
respectively. The subfilter-scale tensor (τij)sfs is defined by the mathematical relation

(τij)sfs = uiuj − ūiūj (3)

The presence of the turbulent contribution (τij)sfs in equation (2) indicates the effect of the subfilter
scales on the resolved field. The resolved scale tensor is defined by the relation

(τij)les = ūiūj − 〈ui〉 〈uj〉 (4)

where 〈.〉 denotes the statistical average. So that, the Reynolds stress tensor τij including the small
and large scale fluctuating velocities is computed as the sum of the subfilter and resolved stresses

τij = 〈(τij)sfs〉+ 〈(τij)les〉 (5)

whereas the statistical turbulent kinetic energy is obtained as the half-trace of the tensor τij (5)
leading to

k = 〈ksfs〉+ 〈kles〉 (6)
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2.2 The subfilter stress model

The subfilter stress modeling finds its physical foundation in the spectral space by considering
the Fourier transform of the two-point fluctuating velocity correlation equations in homogeneous
turbulence [30, 37]. The extension to non-homogeneous turbulence is developed within the frame-
work of the tangent homogeneous space [30]. Note that a formalism based on temporal filtering
has been also proposed recently to handle non-homogeneous flows leading to a variant of the
PITM method using temporal filters and called Temporal Partial Integrated Transport Model-
ing (TPITM) method [38, 34]. From a physical point of view, it is assumed in the present LES
framework that the interaction mechanisms of the subfilter-scales with the resolved scales of the
turbulence are of the same nature than the interaction mechanisms involving all the fluctuating
scales with the mean flow prevailing in RANS models, allowing transposition of closure hypotheses
from RANS to LES. This hypothesis is so natural that it was already used in the pioneering work
of Deardorff [39]. As a result, the subfilter model based on the transport equations for the subfilter-
scale stresses (τij)sfs and the subfilter dissipation rate εsfs look formally like the corresponding
RANS/RSM model but the coefficients used in the model are no longer constants. They are now
some functions of the dimensionless parameter ηc involving the cutoff wave number κc and the
turbulent length scale Le built using the total turbulent kinetic energy k = 〈ksfs〉+ 〈kles〉, the total
dissipation rate ε = 〈εsfs〉 + 〈ε<〉 composed of the subfilter dissipation rate εsfs and the resolved
macro-scale dissipation rate ε<

ηc = κcLe =
π k3/2

(∆1∆2∆3)1/3 ε
(7)

The main feature of the PITM method is that the subfilter stress model varies now continuously
with respect to the ratio of the turbulent length-scale to the grid-size Le/∆. For the limiting
condition when the parameter ηc goes to zero, the subfilter stress model behaves like a RANS/RSM
model whereas when ηc goes to infinity, the computation switches to DNS or under resolved DNS
if the grid-size is not refined enough because the energy cannot be maintained. In regard with
academic LES simulations, which require that the spectral cutoff must be located within the
inertial range, the present subfilter stress model allows to perform flow simulations on relatively
coarse grids since the cutoff wavenumber can be located almost anywhere inside the spectrum.
By using the material derivative operator D/Dt = ∂/∂t+ ūk∂/∂xk, the transport equation of the
subfilter stress tensor can be written in the simple compact form as

D(τij)sfs
Dt

= Pij + Ψij + Jij − (εij)sfs (8)

where the terms appearing in the right-hand side of this equation are identified as production,
redistribution, diffusion and dissipation, successively. The production term Pij is produced by the
interaction between the subfilter stress and the filtered gradient velocity

Pij = −(τik)sfs
∂ūj
∂xk
− (τjk)sfs

∂ūi
∂xk

(9)

The redistribution, diffusion and dissipation terms need to be modeled. Like in RANS modeling,
the redistribution term Ψij can be decomposed into a slow part Ψ1

ij , a rapid part Ψ2
ij and a wall
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reflexion term Ψ3
ij . The slow term Ψ1

ij characterizes the return to isotropy due to the action of

turbulence on itself whereas the rapid term Ψ2
ij describes the return to isotropy by action of the

filtered velocity gradient. The wall reflexion term Ψ3
ij accounts for the wall effects caused by the

reflexion of the pressure fluctuation from rigid walls. The term Ψ1
ij is modeled assuming that the

usual statistical Reynolds stress models must be recovered in the limit of vanishing cutoff wave
number κc and considering also that the small scales return more rapidly to isotropy than the large
scales before cascading into smaller scales by non-linear interactions

Ψ1
ij = −csfs1

εsfs
ksfs

(
(τij)sfs −

2

3
ksfs δij

)
(10)

where csfs1 is an increasing function of the parameter ηc. This function is empirically proposed in
the following form

csfs1(ηc) = c1
1 + αη1 η

2
c

1 + αη2 η2
c

(11)

where in this relation, c1 is the usual Rotta constant used in statistical modeling and αη1, αη2 are
constant coefficients. The second term Ψ2

ij is modeled by

Ψ2
ij = −c2

(
Pij −

1

3
Pmm δij

)
(12)

where the coefficient c2 remains the same than in statistical modeling. The wall reflexion term is
modeled by [40]

Ψ3
ij = c1w

εsfs
ksfs

((τkl)sfsnknlδij − 3
2
(τki)sfsnknj − 3

2
(τkj)sfsnkni) fw

+ c2w

(
Ψ2
klnknlδij − 3

2
Ψ2
iknknj − 3

2
Ψ2
jknkni

)
fw (13)

where in this expression, ni is the unit vector perpendicular to the wall and fw is a near wall
damping function. The diffusion term Jij appearing in equation (8) due to the fluctuating velocities
and pressure together with the molecular diffusion, is modeled assuming a gradient law hypothesis

Jij =
∂

∂xk

(
ν
∂(τij)sfs
∂xk

+ cs
ksfs
εsfs

(τkl)sfs
∂(τij)sfs
∂xl

)
(14)

where cs is a numerical coefficient. Closure of equation (8) requires to model the subfilter tensorial
dissipation rate (εij)sfs which is approached by (2/3)εδij . The modeling of dissipation-rate εsfs is
made in the present case by means of its transport equation. This allows to obtain an accurate
estimate of the subfilter dissipation rate even in situation of non-equilibrium flows when the grid-
size is no longer a good estimate of the characteristic turbulence length-scale [41]. As a result of
the theory developed in the spectral space [30, 42], the fluctuating modeled transport equation for
the subfilter-scale dissipation-rate εsfs reads

Dεsfs
Dt

= csfsε1
εsfs
ksfs

P − csfsε2
ε2sfs
ksfs

+ Jε (15)
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where P = Pmm/2. The coefficient csfsε1 is constant whereas the coefficient csfsε2 appearing in
equation (15) is found to be a function of the ratio of the subfilter energy to the total energy
〈ksfs〉 /k as follows [30]

csfsε2 = cε1 +
〈ksfs〉
k

(cε2 − cε1) (16)

and where the coefficients cε1 and cε2 appearing in this equation denote the usual constants used
in the statistical dissipation rate transport equation. The theory shows that the coefficients of the
production term remain the same for both RANS and LES dissipation-rate equations csfsε1 = cε1 =
3/2. One can notice that the method can be adapted when the reference RANS constant coefficient
cε1 is not equal to 3/2, and the relation (16) is still valid. Equation (15) using the relation (16)
constitutes the main feature of the PITM approach where only the part of the spectrum for κ > κc
is modeled. The ratio 〈ksfs〉 /k appearing in equation (16) is evaluated by means of an accurate
energy spectrum E(κ) inspired from a Von Kármán like spectrum valid on the entire range of
wavenumbers

E(κ) =
2
3βηL

3
e k κ

2

[1 + βη(κLe)3]11/9
(17)

where βη is a constant coefficient, leading to the result [32]

〈ksfs〉
k

= [1 + βη(κcLe)
3]−2/9 (18)

So that csfsε2 takes the analytical expression

csfsε2(ηc) = cε1 +
cε2 − cε1

[1 + βη η3
c ]

2/9
(19)

However, one has to keep in mind that the computed energy spectrum shape is not universal and
is locally evolving in time and space. In practice, the computed ratio value 〈ksfs〉 /k provided by
the LES simulation may slightly differ from the solution of equation (18). This usual situation
occurs for flows that are out of spectral equilibrium. The ε equation then works in order to
bring the calculated 〈ksfs〉 /k value close to the analytical equilibrium value. The use of the
Von Kármán spectrum allows to satisfy automatically the limiting condition when the subfilter
energy approaches the total energy. Equation (19) indicates that the function csfsε2 acts like a
dynamical parameter which controls the spectral distribution of turbulence and verifies the limiting
conditions lim ηc→0 csfsε2(ηc) = cε2 and lim ηc→∞ csfsε2(ηc) = cε1 . At this step, it is of importance
to note that equation (15) is related to the subfilter spectral interval [κc,∞[ and that the source
term involves the energy flux P through the cutoff which depends on the location of κc [28].
However, the value of the dissipation-rate itself is obviously physically independent of κc. When
integrating the spectral energy equation in the [κc,∞[ interval, one can find that the coefficient
csfsε2 is consequently dependent on κc so that the terms in balance appearing in equation (15)
allows to recover a dissipation-rate value independent of κc. This is physically consistent, contrary
to what was asserted in reference [26]. The theoretical value of the coefficient βη appearing in
equation (19) is obtained by the limiting condition of the Kolmogorov law at high wavenumbers
limκ→∞E(κ) = CKε

2/3κ−5/3 where CK is the Kolmogorov constant leading to the theoretical value
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βηth = [2/(3CK)]9/2. The diffusion term Jε appearing on the right hand side of equation (15) is
modeled assuming a well-known gradient law hypothesis

Jε =
∂

∂xj

(
ν
∂εsfs
∂xj

+ cε
ksfs
εsfs

(τjm)sfs
∂εsfs
∂xm

)
(20)

where cε is a constant coefficient. The present subfilter stress model formulation is extended to
low Reynolds number flows using the functions listed in table 1 and the second and third subfilter-
scale invariants defined by A2 = aijaji, A3 = aijajkaki, the flatness parameter A = 1− 9

8(A2 −A3)
where aij = [(τij)sfs− 2

3ksfsδij ]/ksfs. The numerical coefficients are the following : αη1 = 1.3/400,
αη2 = 1/400, cs = 0.22, cε = 0.18, cε1 = 1.45, cε2 = 1.9.

Functions Expressions
Rt k2

sfs/(νεsfs)

c1 1 + 2.58AA
1
4
2 [1− exp(−(Rt/150)2)]

c2 0.6A
1
2

c1w −2
3
c1 + 5

3

c2w max(2
3
c2 − 1

6
, 0)/c2

fw 0.4k
3/2
sfs/(εsfsxn)

Table 1: Functions used in the subfilter stress model.

2.3 Limiting behavior for the subfilter stress model

From a theoretical point of view, it is of interest to analyze the asymptotic behavior of the sub-
filter stress model when the cutoff location approaches the upper limit of the energy spectrum
wavenumber interval. Considering a spectral equilibrium situation in the inertial zone governed by
the Kolmogorov law, the theoretical ratio of the subfilter energy to the total energy takes the value

〈ksgs〉 /k ≈ (3CK/2) η
−2/3
c . In this case, it is a straightforward matter to show that the subfilter

characteristic length scale goes to the filter width

〈ksgs〉3/2

〈εsgs〉
=

∆

π

(
3CK

2

)3/2

(21)

The subfilter stress model allows to compute the subfilter stress (τij)sfs thanks to the transport
equations (8) and (15) so that the concept of the turbulent viscosity is discarded. But it is
still possible to define a tensorial viscosity given by (νij)sgs = cν(〈ksgs〉 (τij)sgs)/εsgs. For the
sake of clarity, due to the fact that the small scales become isotropic at high Reynolds number,
limηc→∞ 〈(τij)sgs〉 = 2/3 〈ksgs〉 δij , it is simpler to analyze the case of a scalar viscosity given by
νsgs = cν 〈ksgs〉2 / 〈εsgs〉. Assuming a local equilibrium situation inside a very small slice in the far
end of the energy spectrum, 〈εsgs〉 = 2νsgs

〈
S̄ijS̄ij

〉
with S̄ij = (∂ūi/∂xj + ∂ūj/∂xi)/2, it can be
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shown for a two-equation model [32] that the limiting behavior for the subfilter viscosity νsgs is
then given by

νsgs =
1

π2

(
3CK

2

)3

c3/2
ν ∆2

[
2
〈
S̄ijS̄ij

〉]1/2
(22)

This expression shows that the subfilter model behaves like a Smagorinsky model. When perform-
ing flow simulations on refined grids using the PITM method, the computations which are sensitive
to the grid-size through the parameter ηc defined in equation (7) progressively go to highly resolved
LES.

3 Numerical method and conditions of computations

3.1 Numerical method

The numerical simulations are performed by using the research code developed by Chaouat [43]
which is based on a finite volume technique. The governing equations of motion as well as the
transport equations of the subfilter stresses and dissipation-rate are integrated in time by a Runge-
Kutta scheme of fourth-order accuracy. The source terms of the turbulent equations are solved
by an implicit scheme that improves the numerical stability and ensures the positivity of the
normal stresses at each step of the computation. The convective fluxes at the interfaces resulting
from the finite volume technique are computed by a numerical scheme of second-order and fourth-
order accuracy in space which is based on a quasi-centered discretized formulation of the flow
variables [44]. Previous simulations have shown that the numerical method is well appropriate
for performing LES simulations [32]. It has been found also that the second order space accurate
numerical scheme is sufficient for performing LES simulations. The decay of homogeneous isotropic
turbulence referring to the well known experiment of Comte-Bellot and Corssin [45] has been fairly
well reproduced as well as the decay of perturbed spectra with a peak or defect of energy, showing
a qualitative agreement with EDQNM (eddy damped quasi-normal Markovian) spectral model
predictions [46]. Several trial and error tests have been made for selecting appropriate values for the
βη coefficient. This coefficient βη has been set to the value 0.0355 corresponding to a Kolmogorov
constant CK = 1.4 with the aim to obtain an appreciable part of the subfilter energy in comparison
with the resolved energy. This value is calibrated once-for-all. Although more equations need to
be solved at each time advancement, the CPU time consuming is reduced in regard with highly
resolved LES because the simulations can be performed on very coarse grids. The simulations are
worked out on the NEC-SX8 supercomputer and the parallelized code is running approximately at
30 GFLOPS in practice.

4 Fully turbulent channel flow

The test case of the fully developed turbulent channel flow is considered for analyzing the potentials
of the subfilter stress model regarding its capacity to reproduce the flow anisotropy and wall flows.
Different grids are generated with coarse and medium resolutions 16× 32× 64 and 32× 64× 84,

respectively in the streamwise, spanwise and normal directions (x1, x2, x3) for checking the grid
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Figure 1: Mean velocity profile; 〈u1〉 /uτ PITM 1 (16× 32× 64) . . . ; PITM 2 (32× 64× 84) - -; SM 1
(32× 64× 64) ∆; SM 2 (32× 64× 84) ◦; DNS —; Rτ = 395.
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Figure 2: Subfilter stresses 〈(τii)sfs〉1/2 /uτ and resolved stresses 〈(τii)les〉1/2 /uτ . ∆: PITM 1; ◦:
PITM 2. i=1,2,3 from top. Subgrid energy —; Resolved energy - -
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Figure 3: Turbulent Reynolds stresses τ
1/2
ii /uτ . (16× 32× 64). PITM : N: i=1; J: i=2; I: i=3; SM :

M: i=1; C: i=2; B: i=3; DNS :—; Rτ = 395.

independence of the solutions. The dimensions of the channel are 2δ × 2δ × δ. A minimal size
of the box has been retained considering that these calculations are time consuming. But it has
been checked in previous simulations [28] that the box size is sufficient for ensuring the vanishing of
two-point correlation functions in the streamwise direction. In the normal direction to the wall, the
grid points are distributed using non-uniform spacing with refinement near the wall whereas they
are uniform in the two remaining directions, ∆+

1 = 105.3, ∆+
2 = 50.9 for case 1 and ∆+

1 = 50.9,
∆+

2 = 25.1 for case 2. The PITM results are compared with DNS [47] for a Reynolds number
Rτ = 395, based on the friction velocity uτ and the channel half width δ/2. For comparison
purposes, numerical LES simulations using the Smagorinsky model in a version proposed by Lilly
[48] are also performed on the coarse grid 16×32×64 . Figure 1 shows the profiles of the statistical
mean velocity 〈u1〉 /uτ for both PITM and Smagorinsky simulations. The PITM profiles agree very
well with DNS data whereas the Smagorinsky profiles strongly deviate from the DNS data in the
logarithmic region. Figure 2 displays the evolutions of the subfilter and resolved stresses in the
streamwise, spanwise and normal direction, respectively, for the coarse and medium grids. One can
see that the subfilter scale stresses are indeed anisotropic in the vicinity of the walls and that the
sharing out of the turbulence energies is governed by the grid size. Figure 3 describes the evolutions

of the normalized total Reynolds stresses τ
1/2
ii /uτ = (〈(τii)sgs〉 + 〈(τii)les〉)1/2/uτ (i=1,3) for the

simulation performed on the coarse grid 16 × 32 × 64 . As a result, it appears that the stresses
produced by the subfilter model agree well with the DNS data whereas the stresses computed by
the Smagorinsky model highly overpredict the DNS data.
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5 Channel flow with streamwise periodic constrictions

5.1 Computational framework

Numerical PITM simulations of the periodic flow over 2D hills are performed on a very coarse
grid and on a medium grid by using the present subfilter stress model. For comparison purposes,
RANS simulations using the Reynolds stress model (RSM) defined in reference [5, 43] are also
undertaken on the coarse grid. This flow over periodic hills is considered because it constitutes a
challenging test case which embodies turbulence mechanisms associated with separation, recircu-
lation, reattachment, acceleration that are difficult to reproduce numerically. The flow is highly
unsteady and governed by the separation and three dimensional wall effects. Initially, the hill
configuration was proposed as a benchmark case at the 10th joint “ERCOFTAC/IAHR/COST
Workshop on Refined Turbulence Modeling ”[49] for assessing the turbulence models ranging from
RANS to LES. It has been found that RANS models performed badly this flow providing also
disparate solutions. The simulations on coarse grids indicated a sensitive dependence of the mean
reattachment location on the separation. Temmerman et al. [50] performed numerical simulations
on coarse, medium and refined grids by using six subgrid-scale models including for instance the
Wall-Adapting Local Eddy-Viscosity Model (WALE) and eight practices of approximating the near
wall-region for identifying the sensitivity of the solutions to subgrid-scale modeling, grid density
and wall treatments. Their simulations on coarse grids point out the importance of an adequate
streamwise resolution of the flow in the separation zone. Saric et al. [51] performed detached eddy
simulation on different grids showing acceptable results. The grid-resolutions were sufficiently fine
for predicting accurately the separation point but the majority of the DES computations delayed
the reattachment locations roughly at x1/h ≈ 5 although some differences were observed between
these simulations [51]. As a result, the mean streamwise velocity profiles exhibited relatively good
agreement with the reference data although some discrepancies were observed in the regions prior
and after flow reattachment. Furthermore, the turbulent kinetic energy within the reattachment
region was underpredicted and the near-wall peaks of the turbulent stresses were not accurately
captured by these DES simulations. Breuer et al. [52] performed simulations on a coarse grid by
using hybrid RANS/LES models. They mention encouraging results, similar or better than DES if
considering a suitable interface criteria. Fröhlich et al. [53] and Breuer et al. [54] performed highly
resolved simulations on refined grids by using the Dynamic Smagorinsky Model (DSM) with the
aim of investigating the physics of this flow and also for providing a reference data base. More
recently, Jakirlic et al. [31] performed continuous non-zonal hybrid RANS/LES simulations on a
very coarse grid by using a subfilter energy model k − ε− ζ − f derived from the PITM method.
Promising results were obtained for the mean flow variables including the velocity, the shear stress
and the turbulent energy. For the clarity of presentation, these simulations are summarized in
table 2. In the present work, we perform numerical simulations of the constricted channel flow
on the same coarse grid than those used in reference [31] and also on a medium grid for assessing
the effects of the grid refinement, and we compare the results with the reference data provided by
Breuer et al. [54].

The hills constricts the channel by about one third of its height and are spaced at a distance
of about 9 hill heights. The Reynolds number, based on the hill height h and the bulk velocity
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Figure 4: Cross-section of the curvilinear grid 80×100 of the contracted channel
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Figure 5. Dimensionless grid spacings in wall units ∆+ = ∆uτ/ν where uτ is the friction velocity.

(a) – normal direction ∆+
3 ; (b) – streamwise direction ∆+

1 ; - - spanwise direction ∆+
2 . PITM1

(80× 30× 100).
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Authors Turbulence model Grid points (x1/h)sep (x1/h)reat

Temmerman WALE 7. 105 1.12 2.17
et al., 2005[50] 106 0.38 3.45

4.6 106 0.22 4.72
Saric et al., 2005 [51] DES 5. 105 0.214 4.957

7. 105 0.214 5.012
106 0.182 5.123

Fröhlich et al., 2005 [53] DSM 5. 106 0.20 4.56
Breuer et al., 2008 [52] Hybrid RANS/LES model (A) 106 0.254 4.751
Breuer et al., 2009 [54] DSM 13.1 106 0.190 4.694
Jakirlic et al., 2009 [31] PITM k − ε− ζ − f model 2.5. 105 0.20 4.00
Chaouat, present CFD RSM model 2.5 105 0.294 2.771

PITM (τij)sfs − ε model 2.5 105 0.293 4.314
106 0.279 4.366

Table 2: Simulations of flow over periodic hills including separation and reattachment locations.

Ub at the hill crest Re = Ubh/ν is about 10595. Different boundary conditions are applied in
the computational domain. The simulated domain is periodic in the streamwise and spanwise
directions. The streamwise periodic condition removes the need to specify the inflow condition
allowing the assessment of the subfilter stress model without any contamination and potential
sources of errors. No-slip and impermeability boundary conditions are used at the lower and
upper walls. As usually, a mean pressure gradient term is included in the momentum equation for
balancing the viscous friction at the walls but it is adjusted in time to reach the desired Reynolds
number value at each instant. The statistics of the fluctuating velocity correlations is achieved in
space in the spanwise homogeneous direction and in time using a recursive filter.

5.2 Computational grids

The exact dimensions of the computational domain are L1 = 9h, L2 = 4.5h and L3 = 3.036h, in the
streamwise, spanwise and normal directions, respectively. As previously investigated in detail by
Fröhlich et al. [53] by means of the two-point correlation function, the dimension in the spanwise
direction is found to be sufficient for providing accurate results with an affordable computational
cost. Numerical PITM simulations are performed on a coarse curvilinear grid 80×30×100 (≈ 1/4
million grid points) and on a medium grid 160×60×100 (≈ 1 million grid points) in the streamwise,
spanwise and normal directions, (x1, x2, x3). Figure 4 shows the cross-section of the curvilinear
coarse grid. The grid has been refined in the lower and upper wall regions for accurately computing
the boundary layers whereas it is coarser in the center of the channel. One can see also that the
grids in the streamwise direction are more refined beyond the hill crest than in the mid-distance of
the channel in order to accurately reproduce the flow separation caused by the hill geometry, and
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(a)

(b)

Figure 6. Streamlines of the instantaneous flowfield in the mid-plane of the channel at x2/h = 2.
(a) PITM1 simulation (80× 30× 100). (b) PITM2 simulation (160× 60× 100).
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(a)

(b)

Figure 7. Streamlines of the average flowfield. (a) PITM1 simulation (80× 30× 100).
(b) PITM2 simulation (160× 60× 100).

Figure 8: Streamlines of the flowfield. RSM computation (80× 30× 100).
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Figure 9: Vector plot of the instantaneous flow in the plane x2/h = 2. An arrow is shown at each
second grid point, horizontally, and at third grid point, vertically. PITM1 simulation (80× 30× 100).
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to properly describe the flow recirculation as well as the reattachment of the boundary layer. This
region beyond the hill constitutes the key region. Figure 5 displays the dimensionless grid spacings
in wall unit ∆+ = ∆uτ/ν in the streamwise, normal and spanwise directions where uτ =

√
τw/ρ

denotes the shear stress velocity along the lower wall for the PITM1 simulation performed on the
coarse grid. As usually, the grid spacing in the normal direction is computed by using the distance
between the wall and the first grid point. A first sight of this figure indicates that the computed
dimensionless distances ∆+

3 , ∆+
1 and ∆+

2 vary along the lower wall with respect to the streamwise
distance, showing a decrease beyond the first hill crest followed by an increase in the windward
slope of the second hill crest. The dimensionless distance ∆+

3 in the normal direction to the lower
wall is of the order of unity except in the windward region of the hill where ∆+

3 approaches 3.5,
whereas the other dimensionless distances in the streamwise and spanwise directions verify the
inequations ∆+

1 < 120 and ∆+
2 < 210 that are strongly less stringent than the recommendations

for wall-resolved LES given by Piomelli and Chasnov [55]. These results show clearly that the
present grid is very coarse in the streamwise and spanwise directions. As a consequence, this
PITM simulation does not require extremely large memory and computing time resources. For the
simulation performed by Fröhlich et al. [53], and Breuer et al. [54], these dimensionless distances,
∆+

1 and ∆+
2 , are below than 50 and 30, and 20 and 9, respectively.

5.3 Streamlimes and velocity vectors

Figure 6 shows the streamlines of the instantaneous flowfield in the mid-plane (x1, x3) of the
channel at x2/h = 2 for both PITM simulations. One can see clearly the presence of the zones
of the flow recirculation that are more or less extended in the lower wall region. It is found that
the large turbulent eddies simulated on the coarse grid are relatively week and smoothly varying.
However, figure 21 will show that they are present and they correspond to an appreciable part of
the fluctuating energy (see figure 19a). For each case, the flow separates in upstream locations
of the hill crest and reattaches in downstream locations. The separation caused by the adverse
pressure gradient results from the strong streamwise curvature of the lower wall. These snapshots
of the instantaneous flowfield clearly illustrate the three dimensional nature of the flow although the
geometry is two-dimensional. Figure 7 shows the streamlines plot of the averaged flowfield for both
PITM simulations. One can see that the flow statistically separates at x1/h ≈ 0.23 downstream
the hill crest and reattaches at x1/h ≈ 4.3. When comparing with figure 8 showing the streamlines
of the flowfield computed by the RANS/RSM model [5], it appears that the RSM model predicts a
too small recirculation zone that extends roughly from x1/h ≈ 0.2 to the approximate value 2.80.
The reason of these different predictions is not clearly established, but one can reasonably invoke
the instantaneous large eddies naturally issued from the streamwise curvature of the lower wall
that play a major role in this type of flow. Figure 9 shows the snapshot of the vector plots of the
instantaneous flow in the mid-plane x2/h = 2. The unsteady character of the flow, well illustrated
through the irregularity of the vector plots, is more pronounced in the recirculation zone and in
the reattachment region.
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5.4 Friction coefficient

Figure 10 displays the distribution of the friction coefficient Cf = τw/(0.5ρU
2
b ) along the lower

wall for both simulations. Comparisons are made with the reference data [54], (note that figure
11(a) of reference [54] uses the definition Cf = τw/(ρU

2
b )). As a result of interest, one can see

that both PITM simulations performed on the coarse and medium grids predict rather well the
friction coefficient along the lower wall in good agreement with the reference data, even if it is
overpredicted in the windward region of the first hill and slightly behind the second hill. The friction
coefficient performed on the coarse and medium grids present almost similar evolutions, except in
the leeward region of the first hill where a better agreement with the reference data is obtained for
the PITM2 simulation. For both PITM simulations, the friction coefficient decreases behind the
hill crest reaching a first minimum value at x1/h = 0.3. Then, this coefficient slightly increases and
diminishes again attaining a second-minimum value at approximately 2.77 that corresponds roughly
to the location of the maximum reverse flow. Afterwards, the friction coefficient slowly reincreases
towards the second hill crest passing through zero at the reattachment point at x1/h ≈ 4.3. It
slightly decreases near the second leeward hill face at x1/h ≈ 0.7 suggesting that the boundary
layer is decelerated and finally, reaches its maximum value shortly before the hill crest where the
flow strongly accelerates. On the other hand, it appears that the RSM model prediction highly
deviates from the reference data. The reattachment point is anticipated at x1/h = 2.8 confirming
the observation on figure 8 that the recirculation length is too small. Moreover, the friction
coefficient is highly over-predicted when moving from the reattachment point to the windward
region of the second hill.

5.5 Mean velocity

Figure 11 displays the mean velocity profiles 〈u1〉 /Ub at six stations x1/h = 0.05, 0.5, 2, 4, 6 and
8. The selected positions include the regions in the entrance of the channel x1/h = 0.05, just
upon separation x1/h = 0.5, in the middle of the recirculation zone close to the leeward hill face
x1/h = 2, prior to the reattachment x1/h = 4, the post-reattachment and flow recovery x1/h = 6,
and finally, the region of accelerating flow on the windward slope of the hill x1/h = 8. At the
position x1/h = 0.05, the streamwise velocity features a near-wall peak due to the preceding flow
acceleration along the windward of the hill. At the position x1/h = 2, the velocity near the wall
is negative showing that the boundary layer is detached. The maximum reverse flow occurs in
this region. In the post reattachment region after x1/h = 4, the flow consists of the boundary
layer which develops from the reattachment point and the wake originates from the separated
shear layer further upstream. At the position x1/h = 8, the flow is strongly accelerated due to
the presence of the second hill. For both PITM simulations, one can see that the subfilter stress
model provides velocity profiles that exhibit good agreement with the reference data at almost
each position. The mean velocity profiles provided by the PITM1 simulation however presents
some slight discrepancies in the immediate vicinity of the lower wall at two stations, x1/h = 2
where the reverse flow is quasi-maximum and at x1/h = 6 after the reattachment point whereas
the mean velocity profiles associated with the PITM2 simulation agree better with the reference
data. These slight differences observed between the PITM1 velocities and the data are probably
attributed to the grid size which is not sufficiently refined in the streamwise direction for accurately
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describing the strongly varying mean velocity profiles. On the other hand, it is found that the RSM
model yields velocity profiles that disagree with the reference data on several important aspects,
particularly at the positions x1/h = 2, 4, and 6. The intensity of the flow recirculation is predicted
too high at the position x1/h = 2. Furthermore, the flow reattaches too early at the lower wall
at the station x1/h = 4 indicating that the RSM model is not able to satisfactory reproduce the
recovery process. At this location, the boundary layer thickness is strongly underpredicted by the
RSM model. The origin of the discrepancies with the data is not clear unless to mention that this
type of flow is essentially governed by unsteady mechanisms that cannot be correctly mimicked by
RANS models, even if using sophisticated RSM models.

5.6 Turbulent stresses

The total stresses τij are obtained as the sum of the mean subfilter and resolved parts as indicated in
equation (5). Figure 12 shows the turbulent shear stress τ13/U

2
b profiles at different positions of the

channel for both simulations. The shear stress profiles produced by the PITM simulations present a
qualitative good agreement with the reference data although some discrepancies can be observed in
the lower wall region. More precisely, the turbulent peak that occurs at the stations x1/h = 0.5 in
the boundary layer of the lower wall is not well captured by the PITM1 simulation performed on the
coarse grid. As encouraging results, it is better reproduced by the PITM2 simulation performed on
the medium grid. The maximum negative value of the shear stress τ13/U

2
b ≈ −0.034 for x3/h ≈ 1

at the station x1/h = 2 is under-predicted by the PITM1 simulation although the velocity in this
position agrees relatively well with the data. In other positions, from the reattachment point to the
windward portion of the hill, the agreement with the reference data is better obtained. Regarding
the RANS computation, one can see that the RSM model returns over-predicted stresses in almost
each position of the channel. The shear stress highly disagrees with the data in the windward
regions of the first and second hill crests at x1/h = 0.05 and x1/h = 8, respectively. Figure
13 describes the turbulent energy k/U2

b profiles at different locations of the channel for both
simulations. Like for the shear stress, a first observation reveals that the subfilter model returns
a turbulent energy that agree well with the reference data. But the PITM1 simulation is not able
to well captured the turbulent peaks at the two stations x1/h = 0.05 and x1/h = 0.5 that occur in
the boundary layer of the lower wall because of the coarse grid resolution. Moreover, the turbulent
energy is underpredicted in the region of the reverse flow at x1/h = 2. As previously observed
for the shear stress, the PITM2 performed on the medium grid provides better results than the
PITM1 simulation performed on the coarse grid. The PITM2 simulation allows to accurately
capture the turbulent peaks in the near wall region. Concerning the RANS computation, the
RSM model returns turbulent energies that are slightly over-predicted at almost all the positions
except at x1/h = 2 and x1/h = 4 where the turbulent energy is on the contrary under-predicted
in the core flow. Figures 14, 15, and 16 show the profiles of the streamwise, spanwise and normal
turbulent stresses τ11/U

2
b , τ22/U

2
b and τ33/U

2
b , respectively, plotted at different locations for both

simulations. For this type of flow, there is no doubt that the mean velocity is not only governed
by the turbulent shear stress, but also by the normal stresses which play an important role in
the determining of the flow structures due to the streamline curvature. A first sight reveals that
the subfilter model returns turbulent stresses in relatively good agreement with the reference data
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for almost all positions. However, as it was already noticed in figure 13 for the turbulent energy,
the turbulent peaks appearing in the boundary layer for the streamwise stresses τ11 and normal
stresses τ22 at the two stations x1/h = 0.05 and x1/h = 0.5 are not very well captured by the
PITM1 simulation performed on the coarse grid whereas they are better predicted by the PITM2
simulation performed on the medium grid. For both PITM simulations, the turbulent peaks of the
spanwise and normal stresses, τ22 and τ33 are of lower intensity in the upper wall region. As it
could be expected, it is finally found that the PITM2 simulation performed on the medium grid
provides better results than the PITM1 simulation performed on the coarse grid. One can explain
this outcome thanks to the grid refinement in the streamwise and spanwise directions that allows
a better resolution of the flow. In particular, the three-dimensional component in the spanwise
direction plays an essential role in the vortex stretching mechanisms of the flow and therefore
in the prediction of the turbulence intensity. The RSM model provides turbulent stresses with
an almost satisfactory overall turbulence level but the shape of the individual profiles is not well
recovered. For both simulations, it can be noted that the flow anisotropy is well reproduced thanks
to the pressure-strain correlation term that redistributes the energy among the different stress
components. This term appearing only in second-moment closures demonstrates the usefulness of
the present sufbilter stress model providing a more realistic flow prediction than viscosity based
subgrid scale models. The study of the turbulent stresses provides a clue for analyzing the mean
flow because of the coupling that exists between the mean motion equation and the turbulent
transport equations. Figures 12 to 16 have shown that the RSM model returned overpredicted
turbulent stresses. As a consequence, the mean flow produced by the RSM model is too much
dissipated leading to a reduction of the recirculation length.

5.7 Sharing out of the turbulent energy

As shown in preceding sections, the subfilter stress model is mainly governed by the function
csfsε2 (ηc) that acts like a dynamical parameter which controls the spectral distribution. So that
it is worth analyzing the sharing out of the turbulent energy among the subfilter and resolved
turbulence scales. The first step consists of plotting the evolution of the coefficient csfsε2 versus
the wall distance. Different positions at x1/h = 0.5, 4, 6 have been selected. As shown by figure
17, the subfilter coefficient csfsε2 varies in the range [1.6,1.9]. These values stay nicely in scale
between the two extreme RANS limiting values cε1 = 1.45 and cε2 = 1.90 according to equation
(19). One can see that the function csfsε2 goes to the RANS limit cε2 = 1.90 very near the walls
and decreases when moving to the centerline of the channel. This results means that the subfilter
stress model behaves more or less like the RANS/RSM model in the near wall region, although
the grid is very refined in the normal direction, and like LES in the core flow. Figure 18 illustrates
the sharing out of the turbulent energy in the flow at the same positions x1/h = 0.5, 4 and 6.
As expected, one can see that the subfilter energy is of higher intensity than the resolved energy
in the near wall region whereas the reverse situation occurs in the center of the channel. As a
result of interest, it appears that the subfilter energy is very large in the near wall region even
for a large cutoff wave number. When computing the total energy as the sum of the subfilter and
resolved energies, one can observe a qualitatively good agreement with the reference data [54].
Figures 19 (a) and (b) show the contours of the ratio of the subfilter energy to the molecular
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Figure 11. Streamwise velocity 〈u1〉 /Ub at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8. LES

(Breuer et al., 2009) —; PITM1 (80× 30× 100 · · · ; PITM2 (160× 60× 100) -.-.; RSM - -

viscosity µsfs/µ = (cµρk
2
sfs/ε)/µ as well as the ratio of the total energy to the molecular viscosity

µt/µ = (cµρk
2/ε)/µ, respectively, in the mid-plane x2/h = 2 for the PITM simulation performed

on the coarse grid 80×30×100. The ratio of the subfilter energy to the molecular viscosity ranges
from zero to the approximate value 150 indicating an appreciable subfilter viscosity contribution
given by the turbulence model. Obviously, this result is dependent on the grid resolution. Figure
19 (a) reveals that the distribution of the subfilter viscosity is more pronounced in the second
leeward hill region than in the first hill region, suggesting a strong turbulence activity. Owing to
the fact that the ratio µt/µ is related to the ratio µsfs/µ by the relation µt/µ = (k/ksfs)

2µsfs/µ,
one can see from figure 19 (b) that the ratio of the total viscosity to the molecular viscosity reaches
the maximum value 900. The total turbulence viscosity is of higher intensity in the core flow region
behind the second hill. The differences observed between the viscosity contours plotted in figure
19 (a) and 19 (b) are attributed to the resolved turbulence energy contribution which is of higher
intensity in the core flow than in the boundary layers.
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Figure 12. Turbulent shear stress τ13/U

2
b at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8. LES
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Figure 13. Turbulent energy k/U2

b at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8) LES (Breuer et
al., 2009) —; PITM1 (80× 30× 100) · · · ; PITM2 (160× 60× 100) -.-.; RSM - -
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Figure 14. Streamwise turbulent energy τ11/U

2
b at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8) LES

(Breuer et al., 2009) —; PITM1 (80× 30× 100) · · · ; PITM2 (160× 60× 100) -.-.; RSM - -
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Figure 15. Spanwise turbulent energy τ22/U

2
b at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8) LES

(Breuer et al., 2009) —; PITM1 (80× 30× 100) · · · ; PITM2 (160× 60× 100) -.-.; RSM - -
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Figure 16. Turbulent energy in the normal direction to the walls τ33/U

2
b at different locations

(x1/h = 0.05, 0.5, 2, 4, 6, 8) LES (Breuer et al., 2009) —; PITM1 (80× 30× 100) · · · ; PITM2
(160× 60× 100) -.-.; RSM - -
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Figure 17. Evolution of the subfilter-scale coefficient csfsε2 defined in equation (19) at different

locations x1/h = 0.5, 4, 6. PITM1 (80× 30× 100)
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Figure 18. Sharing out of the turbulent energy k/U2

b at x1/h = 0.5, 4, 6
LES (Breuer et al., 2009) —; subfilter scale energy ksfs ∆ ; resolved scale energy kles ◦ ;

total energy k · · · PITM1 (80× 30× 100)

5.8 Flow anisotropy

Figure 20 describes the solution trajectories along vertical lines starting from the lower wall towards
the upper wall at different streamwise locations, that are projected onto the second and third
invariant planes formed by the anisotropy tensor. In this framework, Lumley [56] has demonstrated
that the possible states of turbulence must remain inside a curvilinear triangle delimited by the
straight line of the two-dimensional state satisfying equation A3−A2+8/9 = 0 and by two curves of

axisymmetric states of equations |A2| = 61/3A
2/3
3 . For isotropic flows, the flatness parameter A goes

to unity since the invariants A2 and A3 are zero whereas near the walls, A is close to zero because
of the two component limit turbulence states. Each diagram of figure 20 shows that the solution
trajectories stay inside the curvilinear triangle of realizability, confirming that the realizability
conditions [57] which imply non-negative values of the three principal invariants Ii, appearing in
the characteristic polynomial P (λ) = λ3 − I1λ

2 + I2λ− I3 deduced from the eigenvalue equation
|τij − λδij | = 0, are perfectly satisfied.
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(a)

(b)
Figure 19. Contours of the ratio of subfilter/total energy to molecular viscosity in the mid-plane

at x2/h = 2. (a) µsfs/µ = (cµρk
2
sfs/ε)/µ; (b) µt/µ = (cµρk

2/ε)/µ. PITM1 (80× 30× 100)
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Figure 20. Solutions trajectories along vertical lines at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8.)

projected onto the second-invariant/third-invariant plane formed by the anisotropy tensor
aij = (τij − 2

3
k)/k. • lower wall; ◦ upper wall. PITM1 (80× 30× 100)
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(a)

(b)
Figure 21. Isosurface of instantaneous filtered vorticity. ω = 200 s−1. (a) PITM1 (80× 30× 100) ;

(b) PITM2 (160× 60× 100)

Moreover, it is possible to see that the trajectories start from the straight line of two-component
limit corresponding to the lower or the upper wall and finally get back again to the linear side of
the realizability triangle. It can be remarked also that the flow anisotropy is more pronounced near
the upper wall than near the lower wall. Then, the trajectories are passing near the origin of the
diagram that represents a more isotropic state. Indeed, this position roughly corresponds to the
centered region of the channel where the stresses are more isotropic, as also observed in Figures 14,
15 and 16. These predictive elements are found to be in qualitative agreement with the previous
analysis of the invariant map conducted by Fröhlich et al. [53] and Breuer et al. [54].

5.9 Flow structures

Figures 21 (a), (b) show the isosurfaces of instantaneous vorticity modulus for the PITM flow
simulations performed on the coarse and medium grids, respectively. These figures reveal the
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presence of elongated vortices that develop in the entire channel and clearly demonstrates the
three dimensional nature of the flows. Due to the flow recirculation, a strong turbulence activity is
visible near the lower wall. One can remark that both PITM simulations succeed in reproducing
qualitatively these dynamical structures. But the PITM2 simulation performed on the medium
grid 160×60×100 is able to capture large scales and also smaller scales due to the grid refinement
effects, as it could be seen when comparing figure 21(a) and 21(b). Therefore, figure 21(b) shows a
more realistic description of the flow structures than figure 21(a), even if the grid resolution is not
really sufficient in the streamwise and spanwise directions to get a fine definition of the structures.
In that sense, a more quantitative structural information requires DNS or highly resolved LES grid
resolutions to be properly computed. Obviously, the RSM computation can only provide mean
organized structures because of the RANS assumptions.

6 Conclusion

The subfilter stress model derived from the PITM method has been successfully used for simulating
PITM continuous hybrid non-zonal RANS/LES internal flows. In a first step, the model has been
validated against the well known fully turbulent channel flow. Then, it has been applied for
simulating the separated flow in a channel with streamwise periodic constrictions. With regard to
highly resolved LES requiring refined grids, the present simulations have been performed on a very
coarse grid and on a medium grid. As a result, it has been found that the subfilter stress model
simulates fairly well this flow with complex physics involving turbulence mechanisms associated
with separation, recirculation, reattachment, acceleration and wall effects. The mean velocity and
turbulent stresses agree fairly well with the reference data but slight discrepancies are however
observed in the immediate vicinity of the lower wall, mainly for the PITM1 simulation performed
on the very coarse grid. As expected, the PITM2 simulation performed on the medium grid
is more accurate than the PITM1 performed on the coarse grid because of the grid refinement.
In contrast with the subfilter model, the RSM model inaccurately predicts this flow, essentially
because the recirculation length is under-estimated. As a consequence, the RSM velocities present
some discrepancies with the reference data in the lower wall region. But it appears that the RSM
stress levels are relatively well predicted although slightly over-predicted in comparison with the
reference data. This failure seems attributed to the inability of RANS models to capture the large-
scale dynamics in the separated shear layer which play a pivotal role in the turbulent mechanisms.
Finally, this work shows that the present subfilter stress model seems to be a good candidate for
simulating engineering turbulent flows with complex physics, with a drastic saving of computational
cost, provided however that the numerical scheme is sufficiently stable and precise for accurately
capturing the unsteady large scales of the flow.
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