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Abstract
Direct numerical simulation of passive scalar tur-

bulent fields subjected to constant time-averaged
fluxes is performed with and without wall scalar fluc-
tuations for several Prandtl numbers. It is found that
the half-scalar variance, dissipation and molecular dif-
fusion processes are highly influenced by the wall
scalar fluctuations but not the redistribution process as-
sociated with the pressure scalar-gradient correlation.

1 Introduction
Turbulent flows involving the transport of passive

scalar are of major importance in many engineer-
ing applications and in nature like for instance the
pollution dispersal in atmosphere. In various flow
configurations involving heat transfer between im-
permeable walls like for instance liquid metal-cooled
reactors, the temperature fluctuations at the wall
are not reduced to zero and may lead to thermal
fatigue failure of solid structures. Considering that
the temperature fluctuations play an important role
in industrial devices, the objective of this paper is
to perform direct numerical simulation (DNS) of
turbulent channel flows to investigate the effect of the
wall-scalar fluctuations on scalar fields (Tiselj at al,,
2001; Flageul et al. 2015, Chaouat and Peyret, 2019).
Simulation are worked out for the Reynolds number
Rτ = uτδ/ν = 395 based on the friction velocity uτ ,
the channel half-width δ and the molecular viscosity
ν, and the Prandtl numbers Pr = 0.1, 1 and 10. A
special interest is devoted to the budget of the scalar
variance k+θ and the turbulent scalar fluxes τ+iθ . This
DNS database will be useful to validate turbulence
models with heat transfer (Schiestel, 2008, Hanjalic
and Launder, 2011; Chaouat, 2017; Schiestel and
Chaouat, 2022).

2 Equations, boundary conditions and
numerical procedure

The momentum equation reads
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where ui and p denote the velocity and pressure, re-
spectively, the coordinate and flow variables are nor-
malized by δ, the friction velocity uτ , the kinematic
viscosity ν and constant density ρ. The quantity Gi =
δ1i is the source term to get periodic condition. As the
mean scalar variable ⟨Θ⟩ increases linearly in the x1

direction, a change of variable is made by introduc-
ing the new scalar variable θ = x1∂ ⟨Θm⟩/∂x1 − Θ
(Kozuka et al., 2009). The transport equation for the
passive scalar θ reads
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where Q = −u+
1 /U

+
b denotes the source term,

U+
b is the bulk velocity. The variable θ is normal-

ized by θτ = qw/(ρcpuτ ) where ρ, cp and qw are
the fluid density, the specific heat at constant pres-
sure and the heat flux at the wall. The heat flux is
qw = −κ(∂θ/∂x3)w where κ stands for the thermal
conductivity κ = ρcpν/Pr. The thermal diffusivity is
σ = κ/(ρcp) = ν/Pr.

Boundary conditions
The flow solution at the interface for the solid-fluid

conjugate system depends on the thermal effusivity ra-
tio of the gas to the solid given by K = a/aw where
a =

√
ρcpκ involving the density ρ, the specific heat

at constant pressure cp, and the scalar conductivity
κ, the subscript w referring to the properties of the
wall. Usually, the ratio of the effusivity of gas to the
one of structural materials is very small K ≤ 10−3

but not for liquids where it is of order unity (Kasagi
et al. 1989). For a turbulent flow subjected to heat
fluxes through the wall, two limiting boundary con-
ditions can be considered depending on the fluid and
solid properties. The first one is the isoscalar bound-
ary condition with a constant wall scalar (case I) im-
plying that its fluctuation at the wall θ′w and its rms
⟨θ′θ′⟩w are zero and corresponds to the usual case
where K ≪ 1, i.e., a ≪ aw with a large wall thick-
ness at the interface. The second one is the isoflux
boundary condition implying non-zero scalar fluctua-
tions at the wall (case II) and corresponds to the case
where K ≫ 1, i.e., a ≫ aw with an infinitesimal wall



thickness, the derivative (∂θ′w/∂xn)w along the nor-
mal direction to the wall xn is zero because q′w = 0
leading to (∂ ⟨θ′θ′⟩ /∂xn)w = 0.
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Figure 1: Kolmogorov and Batchelor length-scales η+
κ , η+

θ

computed for the Prandtl numbers Pr = 0.1, 1 and
10 - - -: ∆+

3 (M1); —: ∆+
3 (M2); ▲: η+

θ (Pr =
0.1); ■ η+

θ = η+
κ (Pr = 1); •: η+

κ (Pr = 10).
Rτ = 395.

Numerical procedure
The dimension of the channel in the streamwise,

spanwise and normal directions along the x1, x2, x3

axes are L1 = 6.4δ, L2 = 3.2δ and L3 = 2δ. For
the Reynolds and Prandtl number values studied here,
the number of grid points varies from the mesh M1 of
resolution 512× 256× 512 for Pr = 0.1 and 1 to M2

of extremely high resolution 1024 × 512 × 1024 for
Pr = 10. The grid refinement allows to solve both
the Kolmogorov scale ηκ = (ν3/ϵ)1/4 and the Batch-
elor length-scale ηθ (Batchelor, 1959; Tennekes and
Lumley, 1972) which approaches ηκ at Pr of order of
unity, ηθ = (σ3/ϵ)1/4 = ηκ/P

3/4
r at small Prandtl

numbers and ηθ = (νσ2/ϵ)1/4 = ηκ/P
1/2
r at large

Prandtl numbers as shown in Figure 1. The equations
are integrated in time using an explicit Runge-Kutta
scheme of fourth order accuracy in time and solved in
space by means of a centered scheme of fourth order
accuracy in space. The CFD code (Chaouat, 2011) is
based on the finite volume technique and is optimized
with message passing interface (MPI).

3 Numerical results
Figure 2 is a snapshot view of the scalar field

θ in the (x1, x3) mid-plane for the Prandtl number
Pr = 10. This figure highlights substantial detach-
ment of swirling vortex elements growing from the
boundary layer to the central region of the channel
along the normal direction to the wall. Figure 3 shows
the contours plots of the instantaneous scalar field θ
in the (x1, x3) mid-plane, respectively, for the Prandtl
numbers Pr = 0.1, 1 and 10. It is found that the
topology of these structures considerably changes as
the Prandtl number increases from Pr = 0.1 to 10.

Indeed, these structures get thinner because of the im-
portant decrease of the Batchelor length-scale ηθ ac-
cording to the power law ηθ = ηκ/P

1/2
r . They are

relatively smooth and organized with dominant large
scales at the lower Prandtl number Pr = 0.1 but be-
come more and more chaotic as the Prandtl number
increases from 0.1 to 10, the gradients being sharper.

Mean scalar and half-scalar variance
Previous simulations (Chaouat and Peyret, 2019)

have shown that the mean scalar ⟨θ+⟩ remains not af-
fected by the wall scalar fluctuations but in the con-
trary, the half scalar variance k+θ = ⟨θ′+θ′+⟩ /2 is
highly impacted essentially in the near wall region.
For instance, Figure 4 illustrates the rms fluctuation in-
tensities for Pr = 1 indicating a change in the immedi-
ate vicinity of the wall. As expected, the rms reduces
to zero for the isoscalar boundary condition (case I)
but not for the isoflux boundary condition (case II)
where it is relatively high satisfying the wall condition
(∂ ⟨θ′θ′⟩ /∂xn)w = 0.

Transport equation for the half-scalar variance
The budget terms appearing in the transport

equation for the half-scalar variance k+θ are non-
dimensionalized by the factor u2

τθ
2
τ/ν. The transport

equation for k+θ reads
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where the terms appearing in this equation are the pro-
duction P+

θ , the turbulent diffusion due to the corre-
lation of the scalar-velocity T+

θ , the molecular diffu-
sion d+θ and the dissipation-rate ϵ+θ of the half-scalar
variance k+θ . The first production term is negligi-
bly small compared with the second term because
∂ ⟨Θ+

m⟩/∂x+
1 ≪ ∂ ⟨θ+⟩/∂x+

3 . Figure 5 shows the
budget of the transport equation for the scalar variance
k+θ . The curves are somewhat flattened for Pr = 0.1
but become very sharp for Pr = 10 and also their
peak move closer to the wall as the Prandtl number in-
creases. The dominant processes in the central region
of the channel are the production as a gain term and the
dissipation rate as a sink term that balance each other
at all Prandtl numbers. The viscous and turbulent dif-
fusion terms are of appreciable magnitude in the very
near wall region showing that they both play an impor-
tant role in the transfer of the passive scalar. It appears
that the dissipation-rate term ϵ+θ and the viscous diffu-
sion term d+θ are still of the same order of magnitude
away from the wall but they are significantly smaller
in the vicinity of the wall for case II in comparaison
with case I. The other terms such as the production P+

θ

and the turbulent diffusion T+
θ remain relatively unaf-

fected by the type of boundary condition, although the
turbulent diffusion T+

θ is however slightly attenuated



Figure 2: Snapshot view of the scalar field θ in the (x1, x3)
mid-plane. θ′w = 0 (case I). Pr = 10.

(a)

(b)

(c)

Figure 3: Contours of the instantaneous scalar field θ in the
(x1, x3) mid-plane. θ′w = 0 (case I). (a) Pr = 0.1.
(b) Pr = 1; (c) Pr = 10.

in the near wall region.

0 20 40 60 80 100

x
3

+

0

1

2

3

4

θ
+

rm
s

Figure 4: Root-mean square of the scalar variance θ+rms =√
⟨θ′+θ′+⟩ versus the wall unit distance. θ′w = 0

(case I), •. q′w = 0 (case II), ▲ . (c) Pr = 1;
Rτ = 395.
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Figure 5: Budget of the transport equation for the scalar
variance k+

θ versus the wall unit distance. θ′w = 0,
•: P+

θ ; ▲ : ϵ+θ ; ♦ : d+θ ; ■ : T+
θ . q′w = 0, ◦: P+

θ ;
△ : ϵ+θ ; ♢ : d+θ ; □ : T+

θ . (a) Pr = 0.1; (b)
Pr = 1; (c) Pr = 10; Rτ = 395.

Transport equation for the scalar fluxes

The budget terms are non-dimensionalized by the
factor u3

τθτ/ν. The transport equation for the turbu-
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Figure 6: Budget of the transport equation for the stream-
wise turbulent scalar flux τ+

1θ versus the wall unit
distance. θ′w = 0, •: P+

1θ; ▲ : ϵ+1θ; ♦ : d+1θ;
■ : T+

1θ; ▼ : Π+
1θ . q′w = 0, ◦: P+

1θ; △ : ϵ+1θ;
♢ : d+1θ; □ : T+

1θ . ▽ : Π+
1θ . (a) Pr = 0.1; (b)

Pr = 1; (c) Pr = 10; Rτ = 395.
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Figure 7: Budget of the transport equation for the wall-
normal turbulent scalar flux τ+

3θ =
〈
u′+
3 θ′+

〉
ver-

sus the wall unit distance. θ′w = 0, •: P+
3θ;

▲ : ϵ+3θ; ♦ : d+3θ; ■ : T+
3θ; ▼ : Π+

3θ . q′w = 0,
◦: P+

3θ; △ : ϵ+3θ; ♢ : d+3θ; □ : T+
3θ . ▽ : Π+

3θ . (a)
Pr = 0.1; (b) Pr = 1; (c) Pr = 10; Rτ = 395.
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where in this equation, τ+ij =
〈
u′+
i u′+

j

〉
. The terms

appearing in this equation are the production, P+(1)
iθ ,

P
+(2)
iθ and P

+(3)
iθ , the turbulent diffusion T+

iθ , the
viscous and molecular diffusion, d

+(1)
iθ and d

+(2)
iθ ,

the scalar-pressure gradients Π+
iθ, and the scalar dis-

sipation ϵ+iθ. Figure 6 displays the evolution of
the streamwise turbulent scalar flux τ+1θ versus the
wall distance. The main contribution of the produc-
tion are P

+(2)
1θ = −τ+13∂ ⟨θ+⟩ /∂x+

3 and P
+(3)
1θ =

−τ+3θ∂
〈
u+
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3 involving the interaction between
the turbulent shear stress and the mean scalar gra-
dient as well as the interaction between the wall-
normal turbulent scalar flux and the mean streamwise
velocity gradient. The dissipation term ϵ+1θ remains
large all over the channel cross-section due to the
high correlation of the fluctuating velocity-scalar gra-
dients

〈(
∂u′+
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j

) (
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j

)〉
. It is found that

the curves corresponding to the different terms ap-
pearing in (4) are departing further in the wall region
but start to merge as the wall distance increases from
the wall. The dissipation-rate and molecular diffusion
terms are considerably attenuated at the wall. More-
over, the scalar-pressure gradients Π+

1θ remains not af-
fected by the wall scalar fluctuations for all Prandtl
numbers. Figure 7 exhibits the evolution of the wall-
normal turbulent scalar flux τ+3θ versus the wall dis-
tance. The production term P+

3θ appearing in (4) is
here mainly governed by the two terms P

+(2)
3θ =

−τ+33∂ ⟨θ+⟩ /∂x+
3 and P
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〈
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involving the interaction of the wall-normal turbu-
lent stress τ+33 with the mean scalar gradient as well
as the interaction between the wall-normal turbulent
scalar flux with the mean normal velocity gradient.
The scalar dissipation-rate ϵ+3θ is caused by the cor-
relation of the fluctuating velocity-scalar gradients〈(
∂u′+

j /∂x+
j

) (
∂θ′+/∂x+

j

)〉
while the scalar pres-

sure gradient correlation term is computed as Π+
3θ =

−
〈
θ′+∂p′+/∂x+

3

〉
. For all Prandtl numbers, the pro-

duction is here negative, while the dissipation-rate as
well as the pressure gradient correlation terms are pos-
itive. It appears that the scalar-pressure gradient cor-
relation term Π+

3θ gradually increases as the Prandtl
number increases so that it contributes more signifi-
cantly to the budget. The budget for τ3θ highly de-

pends on the Prandtl number. For Pr = 0.1, P+
3θ bal-

ance with the two sink terms Π+
3θ and ϵ+3θ whereas for

Pr = 10, P+
3θ roughly balances with Π+

3θ that becomes
dominant among the other terms. This result show that
the contribution of the scalar-pressure gradient corre-
lation term Π+

3θ is essential and cannot be ignored in
the budget equation. At a first sight, no apparent differ-
ences between the curves associated with and without
wall scalar fluctuations are visible from the wall to the
centerline of the channel.

4 Turbulent fluxes
The knowledge of the turbulent scalar fluxes

τiθ = ⟨u′
iθ

′⟩ is of particular interest in mass and heat
transfer. In eddy viscosity models (EVM), it is com-
puted assuming a gradient hypothesis (Hanjalic and
Launder, 2011)

τiθ = − νt
Prt

∂ ⟨θ⟩
∂xi

(5)

where Prt is the turbulent Prandtl number and νt de-
notes the turbulent viscosity. The turbulent Prandtl
number is defined itself as the ratio of the turbulent
eddy viscosity νt to the turbulent eddy diffusivity σt

as

Prt =
νt
σt

=
τ13
τ3θ

∂⟨θ⟩
∂x3

(
∂⟨u1⟩
∂x3

)−1

(6)

Figure 8 exhibits the profile of the turbulent Prandtl
number versus the wall unit distance from the DNS
simulations performed for Pr = 1. The turbulent
Prandtl number reaches a decreasing asymptotic be-
havior close to unity except in the immediate vicinity
of the wall where occurs a deviation from the asymp-
tote. This result validates the hypothesis of an approx-
imately constant turbulent Prandtl number with and
without wall scalar fluctuations roughly around unity
away from the wall.

5 Time-scale ratio R = (kθϵ)/(kϵθ)

It is advantageous for engineering applications to
compute the passive scalar to dynamic time-scale ratio
R = (kθϵ)/(kϵθ) to get an estimate of the dissipation-
rate ϵθ = (kθϵ)/(Rk). Figure 9 describes the evolu-
tion of this ratio R for the Prandtl numbers Pr = 1
versus the wall unit. It is found that R is not a univer-
sal constant but is a function of the wall unit distance.
For both cases, it gradually decreases from high to low
values in the near wall region and reaches a common
asymptotic value when moving away from the wall.
As the dissipation-rate ϵθ is close to zero at the wall for
case II, R takes on extremely high values at x3 = 0 in
comparison with its corresponding values obtained for
case I. Physically, this observation means that the time
scale of the dynamic turbulent field k/ϵ differs from
the time scale of the passive scalar field kθ/ϵθ and that
in the very near wall region the use of R is physically
not relevant in practice for modeling closures.
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Figure 8: Profiles of the turbulent Prandtl number versus the
wall unit distance. θ′w = 0 (case I), •. q′w = 0

(case II), ■Pr = 1; Rτ = 395.
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Figure 9: Dimensionless ratio R = (kθϵ)/(kϵθ) in loga-
rithmic coordinate versus the wall unit distance.
θ′w = 0 (case I), •. q′w = 0 (case II), ■ Pr = 1;
Rτ = 395.

6 Conclusion and perspective
Direct numerical simulations of turbulent channel

flow with scalar transport have been performed on dif-
ferent meshes for Rτ = 395 and Pr = 0.1, 1 and
10. This work provides a useful high resolution DNS
database (Chaouat, 2023). The budget of the transport
equations for the scalar variance k+θ and the stream-
wise turbulent flux τ+1θ were obtained and the effect
of the Prandtl number was investigated for case II in
comparaison with case I. It has been found that the
budget for k+θ is largely dominated by the production
and the dissipation terms that balance each other at
all Prandtl numbers, whereas the molecular and turbu-
lent diffusion terms are effective in the vicinity of the
wall. The dissipation-rate ϵ+θ and the molecular dif-
fusion d+θ terms are highly modified in the vicinity of
the wall depending on the wall scalar boundary condi-
tion. As for k+θ , the budget for τ+1θ is mainly controlled
by the production term P

+(1)
1θ and the dissipation-rate

term ϵ+1θ away from the wall but the diffusion terms
d+1θ and T+

1θ are however appreciable in the vicinity

of the wall. The dissipation and molecular diffusion
terms are highly influenced by the wall scalar fluctu-
ations but not the scalar-pressure gradient term Π+

1θ.
In contrast to the budget for τ+1θ, the budget for τ+3θ
highly depends on the Prandtl number and is essen-
tially governed by the production term P+

3θ, the dis-
sipation term ϵ+3θ but also the scalar-pressure gradient
correlation term Π+

3θ. No substantial perceptible dif-
ferences are observed for the budget τ+3θ with respect
to the wall boundary condition. The computations
of the turbulent Prandtl-number Prt and the passive
scalar to dynamic time-scale ratio R were performed
at Pr = 1. These results show that accounting for wall
scalar fluctuations should be considered in numerical
simulations of turbulent flows involving fluid and solid
combinations at the interface.
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