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1 Context and issues

Mathematical turbulence modelling methods have made significant progress in the past decade for pre-
dicting various practical turbulent shear flows. Many different types of models have been developed in
the past, such as RANS (Reynolds-averaged Navier-Stokes) models [1, 2]. Generally, the RANS models
appear well suited to handle engineering applications involving strong effects of streamline curvature,
system rotation, wall injection or adverse pressure gradient encountered for instance in aeronautics
applications [3, 4, 5, 6]. Multiple-scale models [7, 8, 9] have been developed to account for spectral
non-equilibrium in the framework of one-point closures. Others works [10, 11] have been made then in
this framework. Important works have been also devoted to the two-point approach to extend these
closures to the case of non-homogeneous turbulence. After the work of Cambon et al. [12] dealing with
the extension of EDQNM (eddy-damped quasi-normal Markovian) closures, several efforts have been
pursued [13]. On the other hand, as shown for instance by Lesieur [14], the LES (large eddy simulations)
method using subgrid modelling techniques [15, 16] favoured by the continuous increase in computer
power and speed has been extensively developed. All these various approaches have often been devel-
oped along independent lines and the connection between them is generally not clearly established. So,
there is a real need to unify these points of view in a coherent manner in order to easily bridge these
apparently different models [17]. In this line of thought, let us mention that recently, new turbulence
models that take advantage of RANS and LES approaches based on hybrid zonal methods [18, 19, 20]
or on a hybrid continuous method with “seamless coupling ” [21, 22] are now currently developed for
simulating practical turbulent flows. These models are useful for calculations on relatively coarse grids
when the spectral cutoff is located before the inertial zone. The hybrid continuous method [21, 22]
presents major interest on a fundamental point of view because it bridges different levels of description
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in a consistent way [23]. With a particular emphasis upon the connection between RANS and LES, we
shall show in this paper how the continuous hybrid formulation can be developed. This method is based
on the spectral Fourier transform of the two-point fluctuating velocity correlation equations with an
extension to nonhomogeneous turbulence [17]. In particular, the partial integration based on spectrum
splitting, gives rise to PITM method (partial integrated transport models) [21, 22]. This approach
can yield subfilter transport models that can be used in LES or in hybrid methods, providing some
appropriate approximations are made. The method is well appropriate for calculating non-equilibrium
turbulent flows. In this paper, some applications will be then considered for illustrating the potentials
of this approach.

In the present paper, we shall rely upon a theoretical method based on mathematical physics for-
malism to allow transposition of turbulence modelling from RANS to LES [17]. The recent scientific
literature shows increasing interest in the use of more advanced models in subgrid-scale closures, in-
cluding subfilter algebraic stress models or stress transport models inspired from RANS [24]. This can
be related also to the hybrid RANS/LES approach with seamless coupling [20, 23].

2 PITM approach to subgrid-scale turbulence models

2.1 General formalism

As usually made in large eddy simulations, the spectrum is then portioned using a cutoff wave number
κc. In classical LES this cutoff is located in the beginning of the inertial range of eddies but in the present
approach, like in very large eddy simulations, the cutoff may be located before the inertial range. For
convenience, another wave number κd located at the end of the inertial range of the spectrum can also
be used, assuming that the energy pertaining to higher wavenumbers is entirely negligible. This practise
avoids considering infinite limits and molecular viscosity effects in the far end of the spectrum. When
non-homogeneous turbulence is considered (this is the usual case), the concept of tangent homogeneous
space at a point of the non-homogeneous flow field must be used. In this case, it is then possible to
define the large scale fluctuations (resolved scales) u<i and the fine scales (modelled scales) u>i through
the relations using the wave number κ

u<i =

∫
|κ|≤κc

û′i(X,κ) exp (jκξ) dκ (1)

u>i =

∫
|κ|≥κc

û′i(X,κ) exp (jκξ) dκ (2)

If large eddy simulations make use of a filtering operation instead of statistical averaging, it is of interest
to remark that the previous definition is indeed a filter operating in Fourier space. But it is a particular
filter with interesting properties : if integration is performed in κ in the tangent homogeneous space,
then, the quantity obtained becomes a function of X, and it is the usual statistical mean (see figure
1). So, the previous filter, sometimes called the statistical filter, is well suited to bridge RANS and
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Figure 1: Sketch of tangent homogeneous space hypothesis

LES. Then, the instantaneous velocity ui can be decomposed into a statistical part 〈ui〉, a large scale
fluctuating u<i and a small scale fluctuating u>i such that ui = 〈ui〉 + u<i + u>i . The first two terms
correspond to the filtered velocity ūi such that ūi = 〈ui〉 + u<i . The velocity fluctuation u′i contains
a large-scale and a small-scale parts, u′i = u<i + u>i . This particular filter, as a spectral truncation,
presents also some additional useful properties that are not verified for progressive filters. In particular,
it can be shown [8] that large scale and small scale fluctuations are uncorrelated 〈ϕ>ψ<〉 = 0 implying
for instance the relation

Rij = 〈uiuj〉 − 〈ui〉 〈uj〉 = 〈u′iu′i〉 =
〈
u<i u

<
j

〉
+
〈
u>i u

>
j

〉
(3)

The transport equation for the filtered Navier-Stokes equations takes the form

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂τ(ui, uj)

∂xj
(4)

in which, following Germano’s derivation [25], the subgrid-scale tensor is defined by the relation

(τij)sgs = τ(ui, uj) = uiuj − ūiūj (5)

The work of Germano [25] shows that the transport equation for the subgrid-scale tensor takes a generic
form if it is written in terms of central moments. The resulting equation can be rearranged as

∂τ(ui, uj)

∂t
+

∂

∂xk

[
τ(ui, uj)ūk

]
=

−τ(ui, uk)
∂ūj
∂xk
− τ(uj, uk)

∂ūi
∂xk

+τ

(
p,
∂ui
∂xj

+
∂uj
∂xi

)
−1

ρ

∂τ(p, ui)

∂xj
− 1

ρ

∂τ(p, uj)

∂xi
− ∂τ(ui, uj, uk)

∂xk

+ν
∂2τ(ui, uj)

∂xk∂xk
− 2ντ

(
∂ui
∂xk

,
∂uj
∂xk

)
(6)
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with the general definition τ(f, g) = fg− f̄ ḡ and τ(f, g, h) = fgh− f̄ τ(g, h)− ḡτ(h, f)− h̄τ(f, g)− f̄ ḡh̄
for any turbulent quantities f , g, h. Equation (6) will then be solved numerically in space and time.
This equation is fluctuating but has a similar form as the equations used in statistical multiple scale
models [17]. Using the definition D/Dt = ∂/∂t+ ūk∂/∂xk, equation (6) reads

D(τij)sgs
Dt

= (Pij)sgs + (Ψij)sgs + (Jij)sgs − (εij)sgs (7)

where in this equation, the production term (Pij)sgs is

(Pij)sgs = −(τik)sgs
∂ūj
∂xk
− (τjk)sgs

∂ūi
∂xk

(8)

The corresponding equation for subfilter energy is obtained by the half trace

Dksgs
Dt

= Psgs + Jsgs − εsgs (9)

where Psgs = (Pmm)sgs/2 and εsgs = (εmm)sgs/2. Because of the nice properties of the truncation filter
in Fourier space, the mean statistical and filtered equations can both be written in a similar form. As
a consequence, we shall assume that closure approximations used for the statistical partially averaged
equations also prevail in the case of large eddy numerical simulations. Let us mention that the present
formalism is in fact the essence of the PITM model, first developed by Schiestel and Dejoan [21] for
the transport equation (9) of the subgrid-scale turbulent energy ksgs = (τmm)sgs/2 and subsequently by
Chaouat and Schiestel [22] for the transport equation (7) of the subgrid-scale turbulent stress tensor
(τij)sgs.

2.2 Two-equation subfilter model

For LES or hybrid RANS/LES approaches, this level of closure is composed of an equation for subfilter
turbulence energy coupled with a dissipation rate equation. The transport equation of the dissipation
rate used in subfilter models is somewhat different from the equation usually used in statistical models.
In the tangent homogeneous space, the value of the mean velocity gradient is denoted Λij. The equation
of the energy spectrum balance E(κ) can be obtained by taking the Fourier transform and mean value
on spherical shells of the transport equation of the two-points velocity correlation [8, 26]:

∂E

∂t
= −Λijτij + T − 2νκ2E (10)

Integration of the basic equation (10) over the wave number range [κc, κd], where κc is the cutoff wave
number given by the filter width and κd is the splitting wave number (see figure 2), yields at high
Reynolds numbers

∂ 〈kgs〉
∂t

= 〈Psgs〉 − F (κd) + F (κc)− ε (11)
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with the relations

〈ksgs〉 =

∫ κd

κc

E(κ)dκ (12)

〈Psgs〉 = −Λlm

∫ κd

κc

τlm(κ)dκ (13)

F (κ) = F(κ)− E(κ)
∂κ

∂t
(14)

F(κ) =

∫ ∞
κ

T (κ′)dκ′ = −
∫ κ

0

T (κ′)dκ′ (15)

ε = 2ν

∫ κd

κc

κ2E(κ)dκ (16)

F represents the spectral energy rate transferred into the wave number range [κ,+∞] by vortex stretch-
ing from the wave number range [0, κ]. Equation (9) can be derived equivalently in physical space [22]
with corresponding expressions for the production, transfer and dissipation (9). Considering the cutoff
wave number κc given by the filter width, the splitting wave number κd is then determined by the
dimensional relation

κd − κc = ζc
ε

〈ksgs〉3/2
(17)

where ζc is a coefficient which may be dependent on the spectrum shape and on the Reynolds number.
Note that this relation is identical to the relation introduced in statistical multiple scale models [9].
The net flux across the splitting wavenumber κd, due to the variations of the splitting is related to the
usual spectral flux by equation (14). As a consequence we obtain

∂κd
∂t

=
F(κd)− F (κd)

E(κd)
(18)

Taking into account equation (18) one can easily obtain the transport equation for the dissipation rate

∂ε

∂t
= csgsε1

ε

〈ksgs〉
(〈Psgs〉+ F (κc))− csgsε2

ε2

〈ksgs〉
(19)

where csgsε1 = 3/2 and

csgsε2 =
3

2
− 〈ksgs〉
κdE(κd)

(
F(κd)

ε
− 1

)
(20)

setting κd � κc, and E(κd) � E(κc). In the case of full statistical modelling where κc = 0, equation
(17) is reduced to the equation:

κd = ζd
ε

k3/2
(21)
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where the coefficient ζd is a numerical constant chosen such that κd is located after the inertial range.
By taking the derivative of equation (21) with respect to time, using equation (18) , another formulation
of the standard dissipation rate equation is then obtained

∂ε

∂t
= cε1

ε

k
P − cε2

ε2

k
(22)

where cε1 = 3/2 and

cε2 =
3

2
− k

κdE(κd)

(
F(κd)

ε
− 1

)
(23)

This is in fact the usual ε equation used in statistical closures. Equations (20) and (23) show that the
coefficients csgsε1 and csgsε2 are functions of the spectrum shape. Keeping in mind that the dissipation
rate ε must remain the same regardless the location of the wave number κc, comparing equation (19)
with equation (22) allows to express the coefficient csgsε2 in a more convenient form

csgsε2 = cε1 +
〈ksgs〉
k

(cε2 − cε1) (24)

2.3 Model calibration

The function 〈ksgs〉 /k which appears in equation (24) can be calibrated by referring to the Kolmogorov
law of the three-dimensional energy spectrum in the inertial wave number range in nearly equilibrium
flows E(κ) = CKε

2/3κ−5/3 where CK ≈ 1.50 is the Kolmogorov constant. The subgrid-scale turbulent
kinetic energy is then estimated by integrating the Kolmogorov law in the wave number range [κc,+∞[

〈ksgs〉 =

∫ ∞
κc

E(κ)dκ =
3

2
CKε

2/3κ−2/3c (25)

Introducing a dimensionless wave number defined by ηc = κck
3/2/(ε+ ε<) where ε< = ν∂u<i ∂u

<
i /∂xj∂xj

represents the small part of dissipation coming from the resolved scales u<i , and taking into account

equation (25), we obtain ksgs/k = 1.5CKη
−2/3
c . The statistical kinetic energy k = 〈ksgs〉 + 〈kles〉 is

the total turbulence energy. As it was mentioned, the total dissipation rate ε + ε< includes now the
usual part caused by the subgrid-scale fluctuating and the small part coming from the resolved scales
fluctuating in order to represent the characteristic scale of the whole turbulence spectrum. As found,
the function 〈ksgs〉 /k is dependent of the parameter η

−2/3
c . However, this previous result is only valid in

the inertial range. It is extended empirically to the general case, taking care to satisfy the limit when
〈ksgs〉 tends to k, ( i.e. when ηc goes to zero). So, the coefficient csgsε2 in equation (24) is modelled as
follows

csgsε2 = cε1 +
cε2 − cε1

1 + βη η
2/3
c

(26)

where βη is a numerical constant which takes the theoretical value βη = 2/3CK ≈ 0.444 in order to

satisfy the correct asymptotic behaviour in η
−2/3
c for high values ηc with the limiting conditions:
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limηc→0 csgsε2(ηc) = cε2 , limηc→∞ csgsε2(ηc) = cε1 . In the limit of full statistical modelling, 〈ksgs〉 → k
and the usual RSM model is recovered while in the limit 〈ksgs〉 → 0, the subgrid-scale energy is not
maintained due to the fact that csgsε2 → cε1 and the model behaves like a DNS (but the model become
useless!). The instantaneous fluctuating dissipation rate εsgs verifies the relation 〈εsgs〉 = ε. For LES,
we propose a modelled transport equation for the fluctuating dissipation rate εsgs, referring to equation
(19). Taking into account the convective and diffusive processes as well as low Reynolds number terms
for non-homogeneous flows, the fluctuating dissipation rate εsgs then reads

Dεsgs
Dt

= cε1
εsgs
ksgs

(Pmm)sgs
2

− csgsε2
ε̃sgsεsgs
ksgs

+ (Jε)sgs (27)

where (Jε)sgs =
∂

∂xj

((
ν +

νsgs
σε

)∂εsgs
∂xj

)
(28)

and ε̃sgs = εsgs− 2ν
(
∂
√
ksgs/∂xn

)2
. The values of the numerical coefficients in equations (26) and (27)

are cε1 = 1.45, cε2 = 1.9 and σε = 1.3.

2.4 Practical formulation

The two equation subfilter model is composed of the modelled equations (9) and (27) together with a
gradient diffusion hypothesis νsgs = cνk

2
sgs/εsgs. In a practical formulation for the case of wall bounded

flows, the length scale can be computed using the normal distance to the wall L = Kx3 where K is the
Von Kármán constant. In that condition, we use the alternative dimensionless wave number Nc = κcL
instead of ηc and we introduce the modified coefficient βN in equation (26). In that framework, the

alternative functions of the subgrid-scale turbulence model are written equivalently with βη η
2/3
c =

βN N 2/3
c . The order of magnitude of the new coefficient βN is then obtained by reference to the

logarithmic layer leading to the theoretical value βN ≈ 1.466. The cutoff wave number is approximated
by the filter width κc = π/(∆1∆2∆3)

1/3.

2.5 Limiting behaviour

With the tangent homogeneous space in mind, let us remark finally that when very large filter widths
are used, the filter width has to be dissociated from the grid itself, because the grid must always be fine
enough to capture the mean flow non-homogeneities. When the cutoff location is large then, limiting
behaviours are obtained. The length scale k

3/2
sgs/εsgs is equal to

k
3/2
sgs

εsgs
=
k3/2

εsgs

(
ksgs
k

)3/2

(29)

Taking into account the preceding expression of 〈ksgs〉 /k, equation (29) shows that the subgrid charac-
teristic length scale goes to the filter width

k3/2sgs/εsgs = (3CK/2)3/2 ∆/π (30)
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Moreover, the definition of subfilter viscosity implies ν
3/2
sgs = c

3/2
ν (k3sgs/ε

3/2
sgs) = c

3/2
ν

(
k3sgs/ε

2
sgs

)
ε
1/2
sgs or

νsgs = c
3/2
ν

(
k3sgs/ε

2
sgs

)
(εsgs/νsgs)

1/2. Using then the previous result on the length scale together with the
hypothesis of equilibrium εsgs = 2νsgs 〈Si,jSi,j〉 where Sij = (∂ui/∂xj + ∂uj/∂xi)/2, one finds that the
limiting behaviour for the subgrid viscosity νsgs is simply the Smagorinsky model

νsgs =
1

π2

(
3CK

2

)3

c3/2ν ∆2 [2 〈SijSij〉]1/2 (31)

2.6 Stress transport equation subfilter model

In the subfilter models, as usual in statistical approaches, the redistribution term (Ψij)sgs which appears
in equation (7) is decomposed into a slow and a rapid part (Ψ1

ij)sgs and (Ψ2
ij)sgs in the subgrid-scale range.

The slow term is modelled assuming that usual statistical Reynolds stress models must be recovered in
the limit of vanishing cutoff wave number κc and also that the return to isotropy is increased at higher
wave numbers [22], as also assumed in multiple-scale models

(Ψ2
ij)sgs = −csgs1

εsgs
ksgs

(
(τij)sgs −

1

3
(τmm)sgsδij

)
(32)

(Ψ1
ij)sgs = −c2

(
(Pij)sgs −

1

3
(Pmm)sgsδij

)
(33)

where csgs1 is now a continuous function of the cutoff wave number κc. The value of this coefficient can
be calibrated from experiments. According to the classical physics of turbulence, the coefficient csgs1
must increase with the parameter ηc in order to increase the return to isotropy in the range of larger
wave numbers. To do that, we suggest a simple empirical function

csgs1 =
1 + αη η

2
c

1 + η2c
c1 (34)

where αη is a numerical constant. This function satisfies the limiting condition limηc→0 csgs1(ηc) = c1.
In the practical equivalent formulation, αη η

2
c = αN N 2

c . In this formulation, like in the Launder
and Shima model [27], the function c1 depends on the second and third subgrid-scale invariants
A2 = aijaji, A3 = aijajkaki and the flatness coefficient parameter A = 1− 9

8
(A2 − A3) where aij =

((τij)sgs − 2
3
ksgsδij)/ksgs. The term (Ψij)sgs takes into account the wall reflection effect of the pres-

sure fluctuations and is embedded in the model for reproducing correctly the logarithmic region of the
turbulent boundary layer. It is modelled according to the previous work of Gibson [28]. The diffusion
process (Jij)sgs is modelled assuming a gradient law [22]

(Jij)sgs =
∂

∂xk

(
ν
∂(τij)sgs
∂xk

+ cs
ksgs
εsgs

(τkl)sgs
∂(τij)sgs
∂xl

)
(35)

where cs is a numerical coefficient which takes the value 0.22. Moreover, we assume (εij)sgs = (2/3)εsgsδij.
In contrast to the two-equation model, it can be mentioned that the production term (Pij)sgs is allowed
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to become negative. In such a case, this implies that energy is transferred from the filtered motions up
to the resolved motions, known as back-scatter process. So that, the PITM model for (τij)sgs and εsgs
is based on the modelled equations (7) and (27). However, note that equation (27) is modified for the
diffusion term because of its new tensorial formulation

(Jε)sgs =
∂

∂xj

(
ν
∂εsgs
∂xj

+ cε
ksgs
εsgs

(τjm)sgs
∂εsgs
∂xm

)
(36)

In equation (36), the coefficient cε takes the value 0.18. For the limiting condition when the cutoff wave
number goes to zero, one can see that the PITM model goes to the original model of Launder and
Shima [27].

3 Some illustrative applications of PITM to LES and hybrid

models

3.1 Non-equilibrium turbulent flows

The PITM two-equation model (9) for the subfilter turbulent kinetic energy dissipation rate has been
applied to several turbulent flows including in particular the pulsed turbulent channel flow performed
by Schiestel and Dejoan [21] showing occurrence of lag effects and also the turbulent shearless mixing
layer by Befeno and Schiestel corresponding to the mixing of two turbulent fields of differing scales [29].
In the present paper, we shall focus mainly on injection channel flow.

3.2 Injection induced turbulent channel flow

A channel flow with mass injection through one porous wall which undergoes the development of natural
unsteadiness with a transition process from laminar to turbulent regime has been performed by Chaouat
and Schiestel [22]. This case is of central interest for engineering applications in solid rocket motors
(SRM). The present large eddy simulation has been made using a medium grid (400× 44× 80) in the
streamwise, spanwise and normal directions to the wall. The velocities and turbulent stress profiles
are compared with experimental data [30], and also with RSM computations obtained for the limit of
the PITM model when the cutoff wave number goes to zero [31, 32]. Figure 3 shows the isosurfaces
of the instantaneous spanwise filtered vorticity ω̄2 = ∂ū3/∂x1 − ∂ū1/∂x3 in the downstream part of the
channel and reveals the detail of the flow structures subjected to mass injection. The isosurfaces exhibit
roll-up vortex structures in the spanwise direction, indicating the transitional and turbulent flow regime.
Figure 4 shows the velocity profiles 〈u1〉 /um normalised by the bulk velocity um in two locations of the
channel at x1 = 40 cm and 57 cm. It appears that both LES and RSM computations produce velocity
profiles that agree rather well with the experimental data. Figure 5 describes the streamwise turbulent
stresses 〈u′1u′1〉 /um in different stations of the channel at x1 = 40 cm and 57 cm. As a result of interest,
one can observe that both LES and RSM computations reasonably well predict the turbulence intensity
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of the flow in the downstream transition location where the flow presents a turbulent regime, except,
however, in the immediate vicinity of the wall region.

4 Conclusion

We have shown that the partial integration concept allows to develop subfilter turbulence transport
models that can be used in LES or hybrid approaches. The concept of tangent homogeneous field,
considered as deriving from the first term in the Taylor development of local mean velocity field together
with the use of the spectral statistical filter are essential ingredients [17]. They allow in particular to
dissociate the filter from the grid itself. Because of the filtering made in the tangent space, the method
can be applied in non-homogeneous flows. As known, the total integration in the tangent space exactly
produces the corresponding one-point statistical model in a consistent way. This character is important
for hybrid modelling applications. On the other hand, when the filter width is small, we have shown,
assuming equilibrium flows, that the proposed model is equivalent to a Smagorinsky type model (of
course, provided that the mesh is finer than the filter width). The PITM concept has been considered for
two-equation models (k−ε type models) [21] and for stress transport models [22]. Obviously, every other
statistical model of the scientific literature (including two-equation models, algebraic stress models, non
linear models and various stress transport models) can also be transposed in subfilter version. Some
applications including flow situations with non equilibrium spectrum have been then presented for
illustrating some potentials of the method. The main contribution of the present approach is therefore
to bridge URANS models and LES simulations, opening a promising route of new future developments
in hybrid models with seamless coupling.
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Figure 2: Sketch of spectrum splitting

Figure 3: Isosurfaces of instantaneous filtered vorticity vector ω̄i = εijk∂ūk/∂xj in the spanwise direction
(i=2) |ω̄2| = 3000 (1/s). LES simulation [22]. Experimental cold flow setup of Avalon [30].
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Figure 4: mean velocity profiles normalised by the bulk velocity 〈u1〉 /um in different cross sections (a)
x1 = 40 cm; (b) 57 cm; —: RSM computation [31]; - - -: LES simulation [22]; ∆: experimental data
[30].
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Figure 5: Streamwise turbulent stresses 〈u′1u′1〉
1/2 /um in different cross sections (a) x1 = 40 cm; (b) 57

cm. —-: RSM computation [31]; - - -: LES simulation [22]; ∆: experimental data [30].
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