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OUTLINE

e From RANS to LES modeling

e Partial Integrated Transport Modeling (PITM) method: Hybr  id RANS/LES simulations
— Mathematical physics formalism developed in the spectral s pace
— Transport equation for the subfilter scale stress
— Transport equation for the subfilter dissipation rate
e Engineering applications
— Injection induced flows (space launchers)
— Channel flow with streamwise constrictions (aeronautics in dustry)

— Channel flows subjected to spanwise rotation (turbomachine ry)
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FROM RANS TO LES MODELING

RANS modeling : many contributions in the past forty years

First and second order closures (Launder, Lumley, Speziale , Gatski, Rodi et al...)

Academic large eddy simulation

Smagorinsky (1963) , dynamic Smagorinsky (Piomelli and Germano, 1991)

Structure-function model (Lesieur et al. , 1996) etc ....

Hybrid zonal approach

Detached-Eddy simulation DES (Spalart et al., 2000)

Hybrid continuous approach

PITM method (Schiestel, Chaouat, Dejoan 2005-2011)
TPITM method (Manceau, Gatski, Fadai-Ghotbi et al., 2007-2 011)
Scale-adaptative simulation SAS (Menter et al., 2005-2011 )
PANS method (Girimaji et al., 2006-2011 )
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TURBULENCE MODELING

e Transport equation for the statistical velocity (ui>RANS approach
b o <<u-><’w>)——18<p>+v32<“’i> _ 97y (1)
ot 0z A p 0x; Ox;0r;  Ox;
with Tij = (uzuﬂ — (uz> <’U,J>
e Transport equation for the filtered velocity u; LES and continuous HYBRID approaches
ou; 0 1 Op 0%, O(T;i
) + (alﬂj) _ = D Ty i ( zj)sfs (2)
ot 8xj P 8:131 &vj 8xj 8xj
with (755)sfs = Wity — U;U;
e Second order closure is based on the transport equation of th e tensor T;; or (Tij)sfs
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PARTIALLY INTEGRATED TRANSPORT MODELING (PITM)
METHOD

Objective: to perform large eddy simulations of turbulent fl ows on relatively coarse grids
Bridge between URANS and LES method with  seamless coupling

Self consistency of the PITM method obtained when the cutoff location continuously
varied between two extreme limits (DNS/PITM/RANS)

Rligo (Tij)sts] = (Tij)RANS (3)
Jm [(7i5)s1s] =0 ()

Definition of the subfilter-scale tensor  (7;;)sfs = Uitl; — U; T
Definition of the resolved scale tensor  (7;;)ies = Uit; — (u;) (u;) where (.) denotes the

statistical average

Definition of the Reynolds stress tensor  7;; including the small and large scale fluctuating

velocities 7;; = ((7ij)sfs) + ((Tij)1es) ONERA
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Cooperation between ONERA (Chaouat) and CNRS/IRPHE (Schiestel)

— Spectral partitioning (m = number of zones), definition of fil tered and averaged

guantities

N / /
w= fu)+ 3 ™ e = [ @ (k) exp (€ dr
m—1 FEm—1<|K|<Kkm

— Simulation LES (m=2) : filtered velocity:  u; = (u;) + ui(l)

* Large-scale fluctuating velocity: uf = ui(l)

* subgrid-scale fluctuating velocity: uz> = ui(Q)

ONERA
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Two-point velocity fluctuating correlation for non-homoge neous turbulence
Rij = (uf u)g) (x4, 2 B) (Hinze, 1975)

e New independent variables
— vector difference € =g — x4

~ midway positon X = 2 (x4 + zp)
e Transport equation for the tensor ~ R;; = <u;Au;B> (X,&)

e Taylor series development for the mean velocity (framework of tangent homogeneous

spectral space , Schiestel, 1987; Chaouat and Schiestel, 2007)

—_—

e Fourier transform of the transport equation for the tensor Rij(k, X)

e Integration on a spherical shell in the wave numbers (Schies tel, 1987; Cambon et al., 1992;
Chaouat and Schiestel, 2007)

wij(r, X) = (Ri (X, 5 Rij(k, X)dA(k) (6)

0A

e Partial integrations on the wavenumbers to return in the phy sical space ONERA
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Resulting equation in the spectral space by mean integratio ns over spherical shells,
0i;j (X, k) = (Ri;(X, ¢))> (Chaouat and Schiestel, 2007)

DQOZJ (X, K))
Dt

e Production term Pij,Transferterm ﬁj,Redistribution term Hij,Diffusion term jij,

— Pij(Xa’%) +7;j(X7K3) +Hij(X7"€) +\7ij(X7’$) - gij(Xa’i) (7)

Dissipation term  &;;

ONERA
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Integration in the spectral space for recovering physical s pace guantities

— Statistical one-scale models in the physical space

o DR;;
R;; = / wij (X, k)drx  => Dtj = Py + P4 + Jij — € (8)
0
— Statistical multiple-scale models in the physical space, ( Schiestel, 1987)
Km DR(m)
(m) _ y _ ij  _ p(m) | plm=1)_ p(m)  s(0m) 5(m)_ (m)
KRm—1

9)

— Subfilter-scale models in the physical space, (Chaouat and S chiestel, 2005)

2 D<(Ti')s s> 2 1 2 2 2
(ij)sgs) = (u7u?) = R => ool = PR F) PP 1o+

Dt
(10)
D 17)sfs
by analogy : (TD—sz = ... (11)
ONERA
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MATHEMATICAL PHYSICS FORMALISM IN PHYSICAL SPACE

e Resulting equation in the physical space, (Chaouat and Schi estel, 2007)

DR o nel)  pm) | aGm) L m) ()
’LJ _ m m— m m m m
"Dt Wy 1= g = gy oF @ s T =6 (12)
where
my _ [T o m0(uy) )0 (ug)

ot

m m 8 m m om
Fz(j ) = '7:1'(3' ) 0ij (X, K) fm and \7:7;(3' ) — —/ Ti; (X, k)dk,  (14)
0

and
@,S;n) = / sz (X, K,)dlﬁ},

T = / T (X, k)dk,

Gg;m) - / gij (X, lﬁ))dlﬁ).

(15)

(16)

(17)
ONERA
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e \Wavenumber ranges such as

PARTIALLY INTEGRATED TRANSPORT MODELING (PITM)

Production Inertial Dissipation
zone zone zone
K—5/3
0 x, Ky 0
A

0 k. Ky 0

(e0)

e / Ky

Figure 1: Turbulent processes in the spectral space

0, K¢, [Ke, Kq) and [k g, 00|

ONERA

11




ONERA —11/2011

PARTIALLY INTEGRATED TRANSPORT MODELING (PITM)

METHOD

e Transport equation for the partial turbulent energy
DJ(m)

Dt
e Wavenumber ranges such as [0, k.|, [Ke¢, Kq] and [Kq, 00|

Ok — (ksts))
ot

— p(1) _ F(l)(,ic)

0 (ksss)

T P? — F® () + FY(k,)

0=F®(rq) -

where €3 = €sfs ~ €. Equation (21) indicates that the dissipation rate

interpreted as a spectral flux.

— p(m) + p(m=1) _ p(m) + Jm) _ (m) (18)

(19)

(20)

(21)

€ can indeed be

ONERA
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SPECTRAL SPLITTING

Ln E

F Ke)
/_\
k - ksgs kSgS \

Ke Kd

Figure 2: Turbulent processes in the spectral space

The splitting wavenumber k4 is related to the cutoff wavenumber k. by the relation:

€
Kid = ke =373 (22)
<k8f8>
In the case of full statistical modeling where k. = 0, equation (22) is reduced to the equation:
€
Kd = Cdm (23)
where k4 is located after the inertial range. ONERA
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FIRST FORMULATION OF THE DISSIPATION-RATE

The dissipation rate equation is then obtained by taking the derivative of equation
€
Rd — Ke = Cc—
(ko)™
One can easily obtain:
Oc — ¢ . (P(2) + FO (g )) —c i (25)
a1 sfser <ksfs> c sfsea <ksfs>
where ¢5fse, = 3/2 and
S S .17 2 F(ka) = F(ka\  E(ka) (F(ke) — F(ke)
152279 7 (ka — ko) E(ka) € E(k.) €
(26)
Setting E(k.) > F(kq) and kg > K, then
3 kets Flrg) — F(k
e R (ksfs) (Ka) — F(Kd 1)
2 kqE(kq) €
ONERA
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SECOND FORMULATION OF THE DISSIPATION-RATE

In the case of full statistical modeling where k. = 0, Taking the time derivative of equation

€
Rd = Cdm
yields another formulation of the dissipation rate equatio n:
Oe € €
a = C¢y E <P(1) + P(2)> — Ceq E (29)

where ¢, = 3/2 and

3 k f(lﬁ:d) — F(l-ﬁ;d) (30)
ey = = =
<2 KkeE(kq) €
This is in fact the usual € equation used in statistical closures.
ONERA
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FUNCTION C ¢,

e Analytical expression of the function Csfseq

w3 Aksys)  (Flra) — Fka) 31)
sfse2 ™= kaF(Kq) €
3 k F(kqg) — F(k
o =3 (ka) — F(Kq) (32)
2 kqE(kq) €
(Fsgs)
Csfsea = Ceq + STfs (Ceg - Cel) (33)
e Equations (31) and (32) show that the coefficients Csfse, and cc, are functions of the
spectrum shape
e Note that the fluxes JF and F' can be analytically computed in some particular situations
e Computation of ratio (ks rs) /K
2 3 2
28, L2 kK
B(r) = — PR @
[1+ (K Le)?)]
ONERA
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PITM METHOD

e Instantaneous transport equations and practical formulat lons
Dk, ¢,
th — sfs_esfs+t]sfs (35)
D Tij)sfs
DlTii)ats _ (Pij)sfs — (€ij)sgs + (Pig)sgs + (Jij)sts (36)
Dt
Desfs €sfs (Pmm)sfs egfs
= Ce — Csfse c —I_Jess 37
Dt 1 ksfs 2 f 2(/’7 >k3fs ( ) .f ( )
— “Exact " coefficient ¢, where 1, = (k%/2k.)/(€sps + €%)
Ce, — Ce
Csfse (ﬁc) = C¢, T+ : - (38)
2 L1+ 8,3
— Dynamic procedure (Friess et al., 2010) with g, = ((ksfs) /k)Eq
TCFD
5Csfseg — X Csfses <1 - . (39)
! ONERA
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NUMERICAL METHOD

Three-dimensional compressible code for solving (5+7) tra nsport equations (Chaouat,
2010)

— p, U1, ug, ug, B
- (Tll)sf31 (7-12)sf31 (7-13)sf31 (7-22)sf31 (7-23)sf31 (7-33)sf3, €sfs
Finite volumes technique: fluxes conservative method

ou 1

ot v(Q)

Y (F-Fy)A, +S (40)

g

where F' and FY represent respectively the convective and viscous fluxes th rough the
surfaces A, around the control volume  v(£2), m is the unit vector normal to the surface
A, and S is the source term.

Fourth order Runge-Kutta scheme in time discretization
Implicit scheme in time for the treatment of the turbulent eq uations
Second and fourth order centered schemes in space discretiz ation (MUSCL scheme)

CPU time : the subfilter-scale stress model (7 transport equa tions) only requires 25 %

more time than the viscosity model (2 transport equations) ONERA

—
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INJECTION INDUCED FLOWS

No slip condition for the upper surface
Injection condition for the lower surface

Numerical simulations performed on different grids
— PITM1 (400 x 32 x 80) ~ 1.010°
— PITM2 (400 x 44 x 80) ~ 1.410°

Comparison with highly resolved LES (Apte and Yang, 2003) pe rformed on a refined grid

8.410° (NLgs/Nprrams = 6)

NN

NREE, by

Figure 3: Schematic of channel flow with fluid injection.

ONERA
/—\
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INJECTION INDUCED FLOWS

Figure 4: Isosurfaces of instantaneous filtered vorticity W; = €55 L OUY / &Bj in the spanwise
direction (i=2) |wz| = 3000 (1/s). (Chaouat and Schiestel, 2007)

e Transitional laminar-turbulent flow

e The three-dimensional structures are squeezed upward in th e normal direction to the wall
ONERA
/\

20




ONERA —11/2011

INJECTION INDUCED FLOWS

150

X,/6

Figure 5: Mean velocity profiles in different cross sections

.1 =12cm: V; 22 cm: <; 35 cm:

>: 40 cm: +; 45 cm: O; 50 cm: ; 57 cm: o. —: PITM; Symbols: experimental data (Avalon,

2000)

ONERA
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INJECTION INDUCED FLOWS

0.3 \ ‘ ‘ ‘ 0.3 \ ‘ ‘ ‘ 0.3
0.2 r 1 0.2 r 0.2 r
0.1 ¢ 1 0.1 ¢ 1 0.1
0 L L L L O L L L L 0 L L L L
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
X3 X,/0 X,/6
(@) (b) (c)

0.3

0.2

0.1

O 1 1 1 1
0 02 04 06 08 1

X,/8

(d)

Figure 6: Streamwise turbulent stresses < (7‘11)% > [y, in different cross sections (a)
x1 =40 cm; (b) 45 cm; (c) 50 cm; (d) 57 cm. +: PITM; e: experimental data (Avalon, 2000)

ONERA
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SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS

Figure 7: Cross-section of the curvilinear grid (80 X 100) of the contracted channel
e Numerical simulation performed on a coarse and medium grids 2410°; 105, (Chaouat,
2010)

e Comparison with highly resolved LES performed on refined gri ds 5 10° (Fréhlich et al.,
2005) and 13 10° (Breuer et al., 2009) ( Nz ps/Nprra ~ 54.2)

e Turbulence mechanisms associated with separation, recirc ulation, reattachment and
acceleration that are difficult to reproduce using RANS/RSM models ONERA

—
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SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS

Figure 8: Streamlines of the averaged flowfield

e The flow statistically separates at  x1/h ~ 0.23 downstream the hill and reattaches at
xl/h ~ 4.3 in good agreement with the highly resolved LES data (Fr ~ 6hlich et al., 2005)
and (Breuer et al., 2009)

ONERA
/\
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SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS

@)

-0.5 0 0.5 1 15

15

<u1) /Ub SCl/h = 0.05

d)xy/h =4

Figure 9. Streamwise velocity

15

I
1 15

) x1/h =8

(e)x1/h =06
(uq) /Uy at different locations (1 /h = 0.05, 0.5, 2, 4, 6, 8.
LES (Breuer et al., 2009) —; PITM1 (80 x 30 x 100 - - -;
PITM2 (160 X 60 X 100) -.-.; RSM - -

ONERA
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SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS

0.02

0.02

d)x1/h =4 (e)x1/h =06 () x1/h =8
Figure 10. Turbulent shear stress  713/U7 at different locations ( 1 /h = 0.05, 0.5, 2, 4, 6, 8.
LES (Breuer et al., 2009) —; PITM1 (80 x 30 x 100) - - -;
PITM2 (160 X 60 % 100) - - RSM - - ONERA
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

Figure 11: Schematic of fully-developed turbulent channel

e Coarse grids are deliberately chosen to highlight the abili

simulate large scales of the flow
— PITM1 (24 x 48 x 64) ~ 710%
— PITM2 (84 x 64 x 64) ~ 3.410°

e Comparison with highly resolved LES (Lamballais et al., 199
810° (NLgs/Nprran ~ 11.4)

flow in a rotating frame.

ty of the PITM method to

8) performed on a refined grid

ONERA
/—\
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

15

15 -

0.5
0.5

n 1 n 1 n 1 n 1 n n 1 n 1 n 1 n 1 n
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

X4/ X,/3
(a) (b)
Figure 12: Mean velocity profile (1) /., in global coordinate. PITM1 (24 x 48 X 64): o;
Highly resolved LES (Lamballais 1998): —. R,,, = 14000, (a) Ro,,, = 0.17. (b) Ro = 1.5

e As the rotation rate increases:
— breaking of the symmetry (mean velocity and turbulent stres ses)
— destabilization effects on the anticyclonic flow region

— relaminarization effects on the cyclonic flow region ONERA
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

Figure 13: Isosurfaces of vorticity modulus ~ w = 3u,,, /6 = 12. 10°. R,,, = 14000, R, = 1.50.
PITM2 (84 x 64 x 64)
e As the rotation rate increases:

— the structures become more and more organized in the anticyc lonic wall region

— the structures are less inclined with respect to the wall (a0 < 45°)
ONERA
/\
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CONCLUSION

e Partial integrated transport modeling (PITM) method
— Mathematical physics formalism developed in the spectral s pace
— Continuous hybrid non-zonal RANS/LES simulations perform ed on coarse grids

— Drastic reductions of the computational cost by coarsening the meshes

e PITM is a method and not a model !

— PITM can be applied to each RANS model to derive its correspon ding subfilter model
e Engineering applications
— Simulations of turbulent flows that present a complex physic S

— Unsteady flows with non-standard spectral distribution (so me departure from the

Kolmogorov spectrum)

ONERA
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE

e Dynamic equation for the double velocity correlation (Hinz e, 1975)

OR;; OR;; (X,
i gf €>+2<<UkA>+<ukB>) Rag I

—Rji(X,§) <88<;,;>)A ~ R X, 8) <a§§2>)3
OR;;(X, )

( ULB) <UkA>) R@éj

Lo (o) (k) .

0X
0 / / / / /
_8—& ( <Uz'AUkBUjB> — <uiAukAUjB>)(X,€)

55 (o Watie) + 53 Whia) ) (X,

1 0 P 0 I
‘|‘; <8—£z <pAUJB> — 8—57 <pBuzA>) (X’€>

% 02R 82Rz]
%0, X8 T 255,

(X, &) (41)
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