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OUTLINE� From RANS to LES modeling� Partial Integrated Transport Modeling (PITM) method: Hybr id RANS/LES simulations

– Mathematical physics formalism developed in the spectral s pace

– Transport equation for the subfilter scale stress

– Transport equation for the subfilter dissipation rate� Engineering applications

– Injection induced flows (space launchers)

– Channel flow with streamwise constrictions (aeronautics in dustry)

– Channel flows subjected to spanwise rotation (turbomachine ry)
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FROM RANS TO LES MODELING� RANS modeling : many contributions in the past forty years

– First and second order closures (Launder, Lumley, Speziale , Gatski, Rodi et al...)� Academic large eddy simulation

– Smagorinsky (1963) , dynamic Smagorinsky (Piomelli and Germano, 1991)

– Structure-function model (Lesieur et al. , 1996) etc ....� Hybrid zonal approach

– Detached-Eddy simulation DES (Spalart et al., 2000)� Hybrid continuous approach

– PITM method (Schiestel, Chaouat, Dejoan 2005-2011)

– TPITM method (Manceau, Gatski, Fadai-Ghotbi et al., 2007-2 011)

– Scale-adaptative simulation SAS (Menter et al., 2005-2011 )

– PANS method (Girimaji et al., 2006-2011 )
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TURBULENCE MODELING� Transport equation for the statistical velocity huiiRANS approach� huii�t + ��xj � huii huji� = �1� � hpi�xi + � �2 huii�xj�xj � ��ij�xj (1)

with �ij = huiuji � huii huji� Transport equation for the filtered velocity �ui LES and continuous HYBRID approaches��ui�t + ��xj (�ui�uj) = �1� ��p�xi + � �2�ui�xj�xj � �(�ij)sfs�xj (2)

with (�ij)sfs = uiuj � �ui�uj� Second order closure is based on the transport equation of th e tensor �ij or (�ij)sfs
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PARTIALLY INTEGRATED TRANSPORT MODELING (PITM)

METHOD� Objective: to perform large eddy simulations of turbulent fl ows on relatively coarse grids� Bridge between URANS and LES method with seamless coupling� Self consistency of the PITM method obtained when the cutoff location continuously

varied between two extreme limits (DNS/PITM/RANS)lim�
!0[(�ij)sfs℄ = (�ij)RANS (3)lim�
!1[(�ij)sfs℄ = 0 (4)� Definition of the subfilter-scale tensor (�ij)sfs = uiuj � �ui�uj� Definition of the resolved scale tensor (�ij)les = �ui�uj � huii huji where h:i denotes the

statistical average� Definition of the Reynolds stress tensor �ij including the small and large scale fluctuating

velocities �ij = h(�ij)sfsi+ h(�ij)lesi
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE� Cooperation between ONERA (Chaouat) and CNRS/IRPHE (Schiestel)

– Spectral partitioning (m = number of zones), definition of fil tered and averaged

quantitiesui = huii+ NXm=1u0(m)i ; u0(m)i (�) = Z�m�1<j�j<�m bu0i(�) exp (j��)d� (5)

– Simulation LES (m=2) : filtered velocity: �ui = huii+ u0(1)i� Large-scale fluctuating velocity: u<i = u0(1)i� subgrid-scale fluctuating velocity: u>i = u0(2)i
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE� Two-point velocity fluctuating correlation for non-homoge neous turbulenceRij = 
u0iAu0jB� (xA;xB) (Hinze, 1975)� New independent variables

– vector difference � = xB � xA
– midway position X = 12 (xA + xB)� Transport equation for the tensor Rij = 
u0iAu0jB� (X; �)� Taylor series development for the mean velocity (framework of tangent homogeneous

spectral space , Schiestel, 1987; Chaouat and Schiestel, 2007)� Fourier transform of the transport equation for the tensor dRij(�;X)� Integration on a spherical shell in the wave numbers (Schies tel, 1987; Cambon et al., 1992;

Chaouat and Schiestel, 2007)'ij(�;X) = (Rij(X; �))� = 1A(�) ZZ�AdRij(�;X)dA(�) (6)� Partial integrations on the wavenumbers to return in the phy sical space
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE� Resulting equation in the spectral space by mean integratio ns over spherical shells,'ij(X; �) = (Rij(X; �))� (Chaouat and Schiestel, 2007)D'ij(X; �)Dt = Pij(X; �) + Tij(X; �) + �ij(X; �) + Jij(X; �)� Eij(X; �) (7)� Production term Pij , Transfer term Tij , Redistribution term �ij , Diffusion term Jij ,

Dissipation term Eij
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE� Integration in the spectral space for recovering physical s pace quantities

– Statistical one-scale models in the physical spaceRij = Z 10 'ij(X; �)d� => DRijDt = Pij +�ij + Jij � �ij (8)

– Statistical multiple-scale models in the physical space, ( Schiestel, 1987)R(m)ij = Z �m�m�1 'ij(X; �)d� => DR(m)ijDt = P (m)ij +F (m�1)ij �F (m)ij +�(m)ij +J (m)ij ��(m)ij

(9)

– Subfilter-scale models in the physical space, (Chaouat and S chiestel, 2005)h(�ij)sfsi = 
u>i u>j � = R(2)ij => D h(�ij)sfsiDt = P (2)ij +F (1)ij �F (2)ij +�(2)ij +J (2)ij

(10)

by analogy : D(�ij)sfsDt = :::: (11)

O
N

E
R

A
–

11
/2

01
1

9



MATHEMATICAL PHYSICS FORMALISM IN PHYSICAL SPACE� Resulting equation in the physical space, (Chaouat and Schi estel, 2007)DR(m)ijDt = P (m)ij + F (m�1)ij � F (m)ij +�(m)ij + J (m)ij � �(m)ij (12)

where P (m)ij = Z �m�m�1 Pij(X; �)d� = �R(m)ik � huji�xk �R(m)jk � huii�xk ; (13)F (m)ij = F (m)ij � 'ij(X; �)��m�t and F (m)ij = � Z �m0 Tij(X; �)d�; (14)

and �(m)ij = Z �m�m�1 �ij(X; �)d�; (15)J (m)ij = Z �m�m�1 Jij(X; �)d�; (16)�(m)ij = Z �m�m�1 Eij(X; �)d�: (17)
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PARTIALLY INTEGRATED TRANSPORT MODELING (PITM)
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Figure 1: Turbulent processes in the spectral space� Wavenumber ranges such as [0; �
℄, [�
; �d℄ and [�d;1[
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PARTIALLY INTEGRATED TRANSPORT MODELING (PITM)

METHOD� Transport equation for the partial turbulent energyDk(m)Dt = P (m) + F (m�1) � F (m) + J (m) � �(m) (18)� Wavenumber ranges such as [0; �
℄, [�
; �d℄ and [�d;1[�(k � hksfsi)�t = P (1) � F (1)(�
) (19)� hksfsi�t = P (2) � F (2)(�d) + F (1)(�
) (20)0 = F (2)(�d)� �(3) (21)

where �(3) = �sfs � �. Equation (21) indicates that the dissipation rate � can indeed be

interpreted as a spectral flux.
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SPECTRAL SPLITTING

 

κ κ dc 

κ

Ln E

κc )

κ

sgskk −
ksgs

F (

(F d)

Figure 2: Turbulent processes in the spectral space

The splitting wavenumber �d is related to the cutoff wavenumber �
 by the relation:�d � �
 = �
 �hksfsi3=2 (22)

In the case of full statistical modeling where �
 = 0, equation (22) is reduced to the equation:�d = �d �k3=2 (23)

where �d is located after the inertial range.
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FIRST FORMULATION OF THE DISSIPATION-RATE

The dissipation rate equation is then obtained by taking the derivative of equation�d � �
 = �
 �hksfsi3=2

One can easily obtain:���t = 
sfs�1 �hksfsi �P (2) + F (1)(�
)�� 
sfs�2 �2hksfsi (25)

where 
sfs�1 = 3=2 and
sfs�2 = 32 � hksfsi(�d � �
)E(�d) ��F(�d)� F (�d� �� E(�d)E(�
) �F(�
)� F (�
)� ��

(26)

Setting E(�
) � E(�d) and �d � �
, then
sfs�2 � 32 � hksfsi�dE(�d) �F(�d)� F (�d� �
(27)
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SECOND FORMULATION OF THE DISSIPATION-RATE

In the case of full statistical modeling where �
 = 0, Taking the time derivative of equation�d = �d �k3=2

yields another formulation of the dissipation rate equatio n:���t = 
�1 �k �P (1) + P (2)� � 
�2 �2k (29)

where 
�1 = 3=2 and 
�2 = 32 � k�dE(�d) �F(�d)� F (�d)� �
(30)

This is in fact the usual � equation used in statistical closures.
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FUNCTION Csfs�2� Analytical expression of the function 
sfs�2
sfs�2 � 32 � hksfsi�dE(�d) �F(�d)� F (�d)� �

(31)
�2 = 32 � k�dE(�d) �F(�d)� F (�d)� �

(32)
sfs�2 = 
�1 + hksfsik (
�2 � 
�1) (33)� Equations (31) and (32) show that the coefficients 
sfs�2 and 
�2 are functions of the

spectrum shape� Note that the fluxes F and F can be analytically computed in some particular situations� Computation of ratio hksfsi =kE(�) = 23��L3e k �2[1 + ��(�Le)3)℄11=9 (34)
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PITM METHOD� Instantaneous transport equations and practical formulat ionsDksfsDt = Psfs � �sfs + Jsfs (35)D(�ij)sfsDt = (Pij)sfs � (�ij)sfs + (�ij)sfs + (Jij)sfs (36)D�sfsDt = 
�1 �sfsksfs (Pmm)sfs2 � 
sfs�2(�
) �2sfsksfs + (J�)sfs (37)

– “Exact ” coefficient 
�2 where �
 = (k3=2�
)=(�sfs + �<)
sfs�2(�
) = 
�1 + 
�2 � 
�1[1 + �� �3
 ℄2=9 (38)

– Dynamic procedure (Friess et al., 2010) with rEq = (hksfsi =k)EqÆ
sfs�2 = � 
sfs�2 �1� rCFDrEq �
(39)
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NUMERICAL METHOD� Three-dimensional compressible code for solving (5+7) tra nsport equations (Chaouat,

2010)

– �, u1, u2, u3, E
– (�11)sfs, (�12)sfs, (�13)sfs, (�22)sfs, (�23)sfs, (�33)sfs, �sfs� Finite volumes technique: fluxes conservative method�U�t = � 1v(
)X� (F � Fv)A� + S (40)

where F and Fv represent respectively the convective and viscous fluxes th rough the

surfaces A� around the control volume v(
), n is the unit vector normal to the surfaceA� and S is the source term.� Fourth order Runge-Kutta scheme in time discretization� Implicit scheme in time for the treatment of the turbulent eq uations� Second and fourth order centered schemes in space discretiz ation (MUSCL scheme)� CPU time : the subfilter-scale stress model (7 transport equa tions) only requires 25 %

more time than the viscosity model (2 transport equations)
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INJECTION INDUCED FLOWS� No slip condition for the upper surface� Injection condition for the lower surface� Numerical simulations performed on different grids

– PITM1 (400� 32� 80) � 1:0 106
– PITM2 (400� 44� 80) � 1:4 106� Comparison with highly resolved LES (Apte and Yang, 2003) pe rformed on a refined grid8:4 106 (NLES=NPITM2 = 6)
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Figure 3: Schematic of channel flow with fluid injection.
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INJECTION INDUCED FLOWS

Figure 4: Isosurfaces of instantaneous filtered vorticity �!i = �ijk��uk=�xj in the spanwise

direction (i=2) j�!2j = 3000 (1/s). (Chaouat and Schiestel, 2007)� Transitional laminar-turbulent flow� The three-dimensional structures are squeezed upward in th e normal direction to the wall
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INJECTION INDUCED FLOWS
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Figure 5: Mean velocity profiles in different cross sections . x1 = 12 cm: O; 22 cm: �; 35 cm:�; 40 cm : +; 45 cm: 2; 50 cm: �; 57 cm: Æ. —–: PITM; Symbols: experimental data (Avalon,

2000)
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INJECTION INDUCED FLOWS
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Figure 6: Streamwise turbulent stresses < (�11) 12 > =um in different cross sections (a)x1 = 40 cm; (b) 45 cm; (c) 50 cm; (d) 57 cm. + : PITM ; �: experimental data (Avalon, 2000)
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SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS

Figure 7: Cross-section of the curvilinear grid (80 � 100) of the contracted channel� Numerical simulation performed on a coarse and medium grids 24 105; 106, (Chaouat,

2010)� Comparison with highly resolved LES performed on refined gri ds 5 106 (Fröhlich et al.,

2005) and 13 106 (Breuer et al., 2009) ( NLES=NPITM1 � 54:2)� Turbulence mechanisms associated with separation, recirc ulation, reattachment and

acceleration that are difficult to reproduce using RANS/RSM models
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SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS
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Figure 8: Streamlines of the averaged flowfield� The flow statistically separates at x1=h � 0:23 downstream the hill and reattaches atx1=h � 4:3 in good agreement with the highly resolved LES data (Fr öhlich et al., 2005)

and (Breuer et al., 2009)

O
N

E
R

A
–

11
/2

01
1

24



SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS
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Figure 9. Streamwise velocity hu1i =Ub at different locations ( x1=h = 0:05, 0.5, 2, 4, 6, 8.

LES (Breuer et al., 2009) —; PITM1 (80� 30� 100 � � � ;

PITM2 (160� 60� 100) -.-.; RSM - -
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SIMULATION OF CHANNEL FLOWS OVER PERIODIC HILLS
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Figure 10. Turbulent shear stress �13=U2b at different locations ( x1=h = 0:05, 0.5, 2, 4, 6, 8.

LES (Breuer et al., 2009) —; PITM1 (80� 30� 100) � � � ;

PITM2 (160� 60� 100) -.-.; RSM - -
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

O X 1

δ

X 2

X 3

U 1
Ω

Figure 11: Schematic of fully-developed turbulent channel flow in a rotating frame.� Coarse grids are deliberately chosen to highlight the abili ty of the PITM method to

simulate large scales of the flow

– PITM1 (24� 48� 64) � 7 104
– PITM2 (84� 64� 64) � 3:4 105� Comparison with highly resolved LES (Lamballais et al., 199 8) performed on a refined grid8 105 (NLES=NPITM1 � 11:4)
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION
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Figure 12: Mean velocity profile hu1i =um in global coordinate. PITM1 (24� 48� 64): Æ;

Highly resolved LES (Lamballais 1998): — . Rm = 14000, (a) Rom = 0:17. (b) Ro = 1:5� As the rotation rate increases:

– breaking of the symmetry (mean velocity and turbulent stres ses)

– destabilization effects on the anticyclonic flow region

– relaminarization effects on the cyclonic flow region
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CHANNEL FLOWS SUBJECTED TO A SPANWISE ROTATION

Figure 13: Isosurfaces of vorticity modulus ! = 3um=Æ = 12: 105: Rm = 14000,Ro = 1:50.

PITM2 (84� 64� 64)� As the rotation rate increases:

– the structures become more and more organized in the anticyc lonic wall region

– the structures are less inclined with respect to the wall (� < 45Æ)
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CONCLUSION� Partial integrated transport modeling (PITM) method

– Mathematical physics formalism developed in the spectral s pace

– Continuous hybrid non-zonal RANS/LES simulations perform ed on coarse grids

– Drastic reductions of the computational cost by coarsening the meshes� PITM is a method and not a model !

– PITM can be applied to each RANS model to derive its correspon ding subfilter model� Engineering applications

– Simulations of turbulent flows that present a complex physic s

– Unsteady flows with non-standard spectral distribution (so me departure from the

Kolmogorov spectrum)
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MATHEMATICAL PHYSICS FORMALISM IN SPECTRAL SPACE� Dynamic equation for the double velocity correlation (Hinz e, 1975)�Rij(X; �)�t + 12� hukAi+ hukBi ��Rij(X; �)�Xk =�Rjk(X; �)�� huii�xk �A �Rik(X; �)�� huji�xk �B�� hukBi � hukAi ��Rij(X; �)��k�12 ��Xk �Du0iAu0kBu0jBE+ 
u0iAu0kAu0jB�� (X; �)� ���k �
u0iAu0kBu0jB�� 
u0iAu0kAu0jB��(X; �)� 12� � ��Xi 
p0Au0jB�+ ��Xj hp0Bu0iAi� (X; �)+1� � ���i 
p0Au0jB�� ���j hp0Bu0iAi� (X; �)+�2 �2Rij�Xl�Xl (X; �) + 2� �2Rij��l��l (X; �) (41)
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